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Abstract 
A simple and efficient algorithm for finding the clos- 
est points between two convex polyhedra is described 
here. Data from numerous experiments tested on a 
broad set of convex polyhedra on !X3 show that the 
running time is roughly constant for finding closest 
points when nearest points are approximately known 
and is linear in total number of vertices if no special 
initialization is done. This algorithm can be used for 
collision detection, computation of the distance be- 
tween two polyhedra in three-dimensional space, and 
other robotics problems. It forms the heart of the 
motion planning algorithm of [l]. 

1 Introduction 
In this paper we present a simple method for finding 
and tracking the closest points on a pair of convex 
polyhedra. The method is generally applicable, but 
is especially well suited to repetitive distance calcula- 
tion as the objects move in a sequence of small, dis- 
crete steps. The method works by finding and main- 
taining the pair of closest features (vertex, edge, or 
face) on the two polyhedra. We take advantage of 
the fact that the closest features change only infre- 
quently as the objects move along finely discretized 
paths. By preprocessing the polyhedra, we can verify 
that the closest features have not changed in constant 
time. Our experiments show that, once initialized, the 
expected running time of our algorithm is constant, 
independent of the complexity of the polyhedra. 

Our method is very straightforward in its concep- 
tion. We start with a candidate pair of features, one 
from each polyhedron, and check whether the closest 
points lie on these features. Since the objects are con- 
vex, this is a local test, involving only the boundary 
and coboundary of the candidate features. If the fea- 

tures fail the test, we step to a neighboring feature 
of one or both candidates, and try again. With some 
simple preprocessing, we can guarantee that every fea- 
ture has a boundary and coboundary of constant size. 
This is how we can verify the closest feature pair in 
constant time. 

When a pair of features fail the test, the new pair we 
choose is guaranteed to be closer than the old one. So 
when the objects move and one of the closest features 
changes, we usually find it after a single iteration. 
Even if the closest features are changing rapidly, say 
once per step along the path, our algorithm will take 
only slightly longer. Its also clear that the algorithm 
must terminate, in a number of steps at most equal 
to the number of feature pairs. 

This algorithm is a key part of our general planning 
algorithm, described in [l]. That algorithm creates a 
one-dimensional roadmap of the free space of a robot 
by tracing out curves of maximal clearance from ob- 
stacles. We use the algorithm in this paper to com- 
pute distances and closest points. From there we can 
easily compute gradients of the distance function in 
configuration space, and thereby find the direction of 
the maximal clearance curves. 

2 Related Work 
Collision detection has a long history. It has been 
considered in both static and dynamic (moving ob- 
jects) versions in [2], [3], [4], [5 ] ,  [6], [7] and [8]. Our 
work shares with [6], [7], and [8] the calculation and 
maintenance of closest points during incremental mo- 
tion. But whereas [6], [7], and [8] require linear time 
to verify the closest points, we use the properties of 
convex sets to reduce this check to constant time. In 
this aspect, it  recalls work in [9] and [lo] where local 
applicability constraints are used to check when two 
features can come into contact. 

A fact that has often been overlooked is that col- 
lision detection for convex polyhedra can be done in 
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linear time in the worst case. The proof is by reduc- 
tion to linear programming. If two point sets have 
disjoint convex hulls, then there is a plane which sep- 
arates the two sets. Letting the four variables that 
define the plane be variables, add a linear inequality 
for each vertex of polyhedron A that specifies that 
the point is on one side of the plane, and an inequal- 
ity for each vertex of polyhedron B that specifies that 
it is on the other side. Megiddo and Dyers work [ll], 
[12], [13] showed that linear programming is solvable 
in linear time for any fixed number of variables. More 
recent work [14] has shown that linear time linear prG 
gramming algorithms are quite practical for a small 
number of variables. The algorithm of [14] has been 
implemented, and seems fast in practice. 

3 Object Representations and 
Basic Definitions 

Each object is represented as a convex polyhedron, or 
a union of convex polyhedra. Many real-world objects 
that have curved surfaces are represented by polyhe- 
dral approximations. The accuracy of the approxi- 
mations can be improved by increasing the resolution 
or the number of vertices. With our method, there is 
little or no degradation in performance when the reso- 
lution is increased. For nonconvex objects, we rely on 
subdivision into convex pieces, which unfortunately, 
may take quadratic time. 

Each polyhedron has a field for its faces, edges, ver- 
tices, position, and orientation. Each face is param- 
eterized by its outward normal and its distance from 
the origin. Its data structure also includes a list of 
vertices which lie on its boundaries, a list of edges 
which bound the face, and its coboundary - the poly- 
hedron itself. Each edge is described by its head, tail, 
right face, and left face. Each vertex is characterized 
by its x, y, z-coordinates, and its coboundary which 
is the set of edges intersecting at the vertex. 

The closest pair of features between two general 
convex polyhedra is defined as the pair of features 
which contain the closest points. Let A and B denotes 
the sets of points defining objects A and B in R3. 
The distance between objects A and B is the shortest 
Euclidean distance  AB: 

dAB = min 
p € A , q € B  I P -  ‘ ’ 

and let PA E S A ,  PB E SB be such that 

 AB =I PA - PB I 

where PA and PB are a pair of closest points between 
objects A and B. 

4 Preliminaries 
Given a pair of features, there are altogether 6 pos- 
sible cases that we need to consider: (1) a pair of 
vertices, (2) a vertex and an edge, (3) a vertex and a 
face, (4) a pair of edges, (5) an edge and a face, and 
(6) two faces. 

In general, the case of two faces rarely happens. 
However, in our particular application to path plan- 
ning we may end up moving along maximum clear- 
ance paths which keep two faces parallel, or an edge 
parallel to a face. It is important to be able to detect 
when we have such a degenerate case. 

For each pair of features from objects A and B, first, 
we need to find a pair of closest points between these 
two features. Then, we need to verify that pointA is 
truly the closest point of A to featureB and pointB 
is truly the closest point of B to featureA. If either 
check fails, a new (closer) feature is substituted, and 
the new pair is checked. Eventually, we must termi- 
nate with the closest pair, since we are moving closer 
to the closest pair of features through each iteration. 

In the next section three intuitive geometric appli- 
cability tests, which are the essential components of 
our algorithm, will be described. The overall descrip- 
tions of our approach and the algorithm itself will be 
presented in more detail in the following sections. 

5 Applicability Criteria 
There are three basic applicability criteria that each 
feature-pair has to satisfy to be the closest features. 
These are (i) point-vertex, (ii) point-edge, and (iii) 
point-face applicability conditions. Here the imple- 
mentation details will be briefly described. 

5.1 Point-Vertex Applicability Crite- 
rion 

If P is truly the closest point to V ,  then P must lie 
within the region bounded by the planes which are 
perpendicular to the coboundary of V ,  which are the 
edges touching V .  This can be easily seen from the 
geometry of two vertices as shown in Fig.1. If P lies 
outside one of the plane boundary, then this implies 
that there is at least one edge of V’s coboundary closer 
to P than V .  Therefore, the procedure will “walk” 
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Figure 1: Point-Vertex Applicability Criterion 

to the edge that fails the applicability test and will 
iteratively call the feature test to verify whether P 
and the new edge are the closest features on the two 
objects. 

5.2 Point-Edge Applicability Crite- 
rion 

As for the point-vertex case, if P is really the clos- 
est point to E ,  then P must lie within the region 
bounded by the four planes which are superposed by 
the coboundaries of E ,  as shown in Fig.2. Two of 
these planes are perpendicular to E passing through 
the head and the tail of E ,  respectively. The other 
two planes are perpendicular to the coboundaries of 
E or the right and the left faces of E .  If P satisfies all 
the applicability conditions, then the procedure will 
return P and E as a pair of the closest features. If 
P fails the applicability test of H E  or TE, then the 
procedure will “walk” to the appropriate end of edge 
E and recursively call the general algorithm to ver- 
ify whether the new vertex and P are the two closest 
features on two objects respectively. If P fails the 
applicability test of the right or the left face, then 
the procedure will “walk” to the corresponding face 
(coboundary of E )  and call the general algorithm re- 
cursively to verify whether the new feature (the right 
or left face of E )  and P are pair of the closest features. 

’ Right -Face / Left-Facez 

Figure 2: Point-Edge Applicability Criterion 

5.3 Point-Face Applicability Crite‘rion 

Similarly, if P is actually the closest point to F ,  
then P must lie within the region bounded by the 
planes which are perpendicular to F and containing 
the edges in the boundary of F ,  as shown in Fig.3. If 
P fails one applicability test from one of F’s edges, 
the procedure will, once again, “walk” to the corre- 
sponding edge and call the general algorithm to check 
whether the new feature (in this case, boundary of F 
- EF) and P are a pair of the closest features. In 
addition, we need to check whether P lies above F to 
guarantee that P is not inside the second polyhedron. 
If P lies beneath F ,  it implies that there is at least 
one feature on the given object closer to P than F 
or that collision is possible. Then, the procedure will 
return the closest feature of the given object to P and 
proceed with the usual checking procedures. 

5.4 Preprocessing Procedure 
For vertices of typical convex polyhedra, there are 
usually three or four edges in the coboundary. The 
faces of polyhedra also have four or five edges typi- 
cally. Therefore, frequently the applicability criteria 
require only three to five quick tests for each round. 
When a face has more than five edges in its bound- 
ary or when a vertex has more than five edges in its 
coboundary, the polyhedron is preprocessed by sub- 
dividing the whole volume into smaller cells. That 
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Figure 3: Vertex-Face Applicability Criterion 

is, we divide the original polyhedron by inserting sev- 
eral virtual planes and edges. After preprocessing, 
each vertex of the new cell has only 4 or 5 cobound- 
aries (edges) and each face has only 4 or 5 boundaries 
(edges). Fig.4 shows how this can be done on a cone 
with 8 boundaries (edges) on its bottom face and 8 
coboundaries (edges) on its apex and on a cylinder 
with 8 edges on its top and bottom faces. This pre- 
processing procedure is a simple calculation, and it 
guarantees that when the algorithm starts, every fea- 
ture has a constant size boundary and coboundary. 
Consequently, the three applicability tests described 
above run in constant time. 

In the next section, we will show how these applica- 
bility conditions are used to update the pair of closest 
features between two convex polyhedra approximately 
in constant time. 

6 General Description of the 
Approach 

Given a pair of features of two polyhedra, we apply 
the appropriate applicability check from the last sec- 
tion. 

Except for case (1) - a pair of vertices, case (5) - 
an edge and a face, and case (6) - two faces, we need 
to compute the nearest points between two features, 
before we can apply the applicability tests described 
in the previous section. The details for computing 

Figure 4: Preprocessing of a Cone and a Cylindar 

these nearest points are rather trivial, thus omitted 
here. (Please refer to [15], if necessary.) 

(1) If the features are a pair of vertices, then they both 
have to satisfy the applicability conditions imposed by 
each other, in order for them to be the closest features. 
If either one of the vertices fails the applicability test 
imposed by the other, the algorithm will return a new 
pair of features - one of the two vertices and the edge 
for which the test failed, then continue checking the 
new features until it finds the closest pair. 
(2) Given a vertex and an edge, the algorithm will 
check whether the vertex satisfies the applicability 
conditions imposed by the edge and whether the near- 
est point on the edge to the vertex satisfies the ap- 
plicability conditions imposed by the vertex. If both 
verifications return value “true”, then they are the 
closest features. Otherwise, a corresponding new pair 
of features (depending on which test failed) will be 
returned and the algorithm will proceed until it finds 
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the pair of closest features. 
(3) For the case of a vertex and a face, both of the 
applicability tests imposed by the face to the vertex 
and from vertex to the nearest point on the face must 
be satisfied for this pair to qualify as the “closest- 
feature pair”. Otherwise, a new pair of features will 
be returned and the algorithm will be called again 
until the closest-feature pair is found. 
(4) Similarly, given a pair of edges as inputs, if their 
nearest points satisfy the applicability conditions im- 
posed by the each other, then they are the closest 
features between two polyhedra. If not, one of the 
edges will be changed to a neighboring vertex or a 
face and the check will be done again on the new pair 
of features. 
(5) When a given pair of features is an edge and a face, 
we first need to  decide whether the edge is parallel to 
the face. If it isnt, then the actual closest features 
will be either one of the vertices of the edge and the 
face, or the edge and some other edge bounding the 
face. The former case occurs when this vertex satisfies 
the vertex-face applicability condition, and when the 
edge is pointing “into” the face in the direction of this 
vertex. Otherwise the latter case applies. The edge 
(bounding the face) to be chosen is the edge which is 
closest to the original edge. If the edge and the face 
are parallel, then they are the closest features pro- 
vided two conditions are met. (i) The edge must cut 
the “applicability prism” figure 3 of the face, and (ii) 
the face normal must lie “between” the face normals 
of the faces bounding the edge. 
(6) In the rare occasion when two faces are given as 
inputs, the algorithm has to decide if they are par- 
allel. If they are, it will evoke an overlap-checking 
subroutine which runs roughly at linear time in the 
total number of edges of the two faces. If they are 
both parallel and overlapping, then they are in fact 
the closest features. However, if they are not parallel 
or parallel yet not overlapping, then the first face and 
the nearest edge of the second face to the first face 
will be returned as a pair of new features, and the al- 
gorithm will process them as the case of an edge and 
a face. 

A careful study of all of the above checks shows 
that they all take time in proportion to the size of the 
boundary and coboundary of each feature. Therefore, 
after preprocessing, all checks run in constant time. 
The only exception to this is when f eatureA is a face, 
and f e a t u r e B  lies under the plane of f e a t u r e A .  In 
this case, we cant use a local feature change, because 

this may lead to the procedure getting stuck in a loop. 
The distance between the closest pair of points cor- 
responds to distance between the closest point to the 
origin of the Minkowski sum and the origin itself. Ge- 
ometrically, we are moving around on the “far side” 
of the Minkowski sum of the polyhedra, and the dis- 
tance function has many local minimum, in which we 
may become trapped. When this situation occurs, we 
instead search among all the features of object A to 
find a closest feature to the f e a t u r e B B .  This is not a 
constant time step, but note that it is impossible for 
the algorithm to move to such an opposing face once 
it is initialized. So this situation can only occur when 
the algorithm is first called on an arbitrary pair of 
features. 

The algorithm can take any random pair of features 
of two polyhedra and find the true pair of closest f e a  
tures by iteratively checking and changing features. 
In this case, the running time is proportional to the 
number of feature pairs traversed in this process. It is 
not more than the product of the numbers of features 
of the two polyhedra] because the distance between 
feature pairs must always decrease when a switch is 
made, which makes cycling impossible. Empirically, 
it seems to be not worse than linear when started from 
an arbitrary pair of features. However, once it finds 
the closest pair of features or a pair in their vicin- 
ity, it only takes constant time to keep track of the 
closest pair as the two objects translate and rotate in 
three space. The overall computational time is shorter 
in comparison with other algorithms available at the 
present time. 

If the two objects are just touching or intersect- 
ing, it gives an error message to indicate collision and 
terminates the procedure with the contacting-feature 
pair as returned values. The proof of algorithm’s com- 
pleteness can be found in 1151. 

7 Numerical Experiments 

The algorithm described in this paper has been im- 
plemented in Lucid Common Lisp. The input data 
are a random pair of features from two given objects 
in three dimensional space. The subroutine outputs 
are a pair of the closest features of the two polyhedra] 
as well as a pair of nearest points and the Euclidean 
distance between them. 

Numerous examples in three dimensional space 
have been applied to test the subroutine. The ex- 
amples include a wide variety of polytopes: cubes, 
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Figure 5: Polytopes Used in Example Computations 

rectangular boxes, cylinders, cones, frustrums, and a 
Puma link of different sizes as shown in Fig.5. In par- 
ticular, the number of facets (thus the number of ver- 
tices) or the resolution for cylinders, cones and frus- 
trums have been varied from 12, 20, 24, up to 48 in 
order to generate a richer set of polytopes for testing 
purpose. 

For each pair of polytopes (placed randomly by 
translations and rotations), at least 18 pairs of fea- 
tures are selected to test the subroutine. The exam- 
ples were run on a Sun4 SPARC station which is a 
12.5 Mips 1.4 Mega flops machine. 

The experiment results are briefly summarized in 
Table 1. A more detailed table of running time with 
comparison to the other algorithm available now [6] 
is present in [15]. With initialization to the previ- 
ous closest feature, the subroutine can almost always 
keep track of the closest features of two given poly- 
topes at constant time (about 3 to 4 msec). With- 
out initialization, the algorithm runs in average time 
not worse than linear in the total number of vertices. 
This is what we would expect, since it seems unlikely 
that the algorithm would need to visit a given feature 

Table 1: Average CPU Time in Milliseconds 

more than once. In practice, we believe our a l g e  
rithm compares very favorably with other algorithms 
designed for distance computations or collision detec- 

and [19].) 
tion. (please see ~31, ~41, ~51, ~61, ~71, ~161, 1171, [181, 

8 Conclusion 

A new algorithm for computing the Euclidean dis- 
tance between two polyhedra has been presented here. 
It utilizes the geometry of polyhedra to establish 
three important applicability criteria for detecting 
collisions. With preprocessing to reduce the size of 
coboundary when appropriate, it runs almost always 
in constant time if the previous closest features have 
been provided and (on average) linear in the total 
number of vertices if no special initialization is done. 
Beside its efficiency and simplicity, it is also complete 
- it is guaranteed to find the closest feature or point 
pair if the objects are separated; it gives an error mes- 
sage to indicate collision and returns the contacting 
pair if they are just touching or intersecting. 

The methodology described here can be used in dis- 
tance calculations, collision detection, motion plan- 
ning, and other robotics problem. Our application 
is to plan obstacle-avoidance paths. By tracking the 
closest feature pair of two convex polyhedra incre- 
mentally, the algorithm traces out the skeleton curves 
which are loci of the maxima for a distance function. 

With slight modification, this algorithm can be eas- 
ily extended for nonconvex objects. Since it runs in 
constant time once initialized, the algorithm is ex- 
tremely useful in reducing the error by increasing the 
resolution of polytope approximation, when the ob- 
jects have smooth curved surfaces. Refining the ap- 
proximation to reduce error will no longer have detri- 
mental “side effect” in running time. 
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