
Proceedings of the 1991 IEEE
Intemational Conference m Robotics and Automation

Sacramento, California - April 1991

A Fast Algorithm for Incremental Distance Calculation

Ming C. Lin and John F. Canny
University of California, Berkeley

Berkeley, CA 94720

Abstract
A simple and efficient algorithm for finding the clos-
est points between two convex polyhedra is described
here. Data from numerous experiments tested on a
broad set of convex polyhedra on !X3 show that the
running time is roughly constant for finding closest
points when nearest points are approximately known
and is linear in total number of vertices if no special
initialization is done. This algorithm can be used for
collision detection, computation of the distance be-
tween two polyhedra in three-dimensional space, and
other robotics problems. It forms the heart of the
motion planning algorithm of [l].

1 Introduction
In this paper we present a simple method for finding
and tracking the closest points on a pair of convex
polyhedra. The method is generally applicable, but
is especially well suited to repetitive distance calcula-
tion as the objects move in a sequence of small, dis-
crete steps. The method works by finding and main-
taining the pair of closest features (vertex, edge, or
face) on the two polyhedra. We take advantage of
the fact that the closest features change only infre-
quently as the objects move along finely discretized
paths. By preprocessing the polyhedra, we can verify
that the closest features have not changed in constant
time. Our experiments show that, once initialized, the
expected running time of our algorithm is constant,
independent of the complexity of the polyhedra.

Our method is very straightforward in its concep-
tion. We start with a candidate pair of features, one
from each polyhedron, and check whether the closest
points lie on these features. Since the objects are con-
vex, this is a local test, involving only the boundary
and coboundary of the candidate features. If the fea-

tures fail the test, we step to a neighboring feature
of one or both candidates, and try again. With some
simple preprocessing, we can guarantee that every fea-
ture has a boundary and coboundary of constant size.
This is how we can verify the closest feature pair in
constant time.

When a pair of features fail the test, the new pair we
choose is guaranteed to be closer than the old one. So
when the objects move and one of the closest features
changes, we usually find it after a single iteration.
Even if the closest features are changing rapidly, say
once per step along the path, our algorithm will take
only slightly longer. Its also clear that the algorithm
must terminate, in a number of steps at most equal
to the number of feature pairs.

This algorithm is a key part of our general planning
algorithm, described in [l]. That algorithm creates a
one-dimensional roadmap of the free space of a robot
by tracing out curves of maximal clearance from ob-
stacles. We use the algorithm in this paper to com-
pute distances and closest points. From there we can
easily compute gradients of the distance function in
configuration space, and thereby find the direction of
the maximal clearance curves.

2 Related Work
Collision detection has a long history. It has been
considered in both static and dynamic (moving ob-
jects) versions in [2], [3], [4], [5] , [6], [7] and [8]. Our
work shares with [6], [7], and [8] the calculation and
maintenance of closest points during incremental mo-
tion. But whereas [6], [7], and [8] require linear time
to verify the closest points, we use the properties of
convex sets to reduce this check to constant time. In
this aspect, it recalls work in [9] and [lo] where local
applicability constraints are used to check when two
features can come into contact.

A fact that has often been overlooked is that col-
lision detection for convex polyhedra can be done in

1008
CH2969-4/91/0000/1008$01 .OO 0 1991 IEEE

linear time in the worst case. The proof is by reduc-
tion to linear programming. If two point sets have
disjoint convex hulls, then there is a plane which sep-
arates the two sets. Letting the four variables that
define the plane be variables, add a linear inequality
for each vertex of polyhedron A that specifies that
the point is on one side of the plane, and an inequal-
ity for each vertex of polyhedron B that specifies that
it is on the other side. Megiddo and Dyers work [ll],
[12], [13] showed that linear programming is solvable
in linear time for any fixed number of variables. More
recent work [14] has shown that linear time linear prG
gramming algorithms are quite practical for a small
number of variables. The algorithm of [14] has been
implemented, and seems fast in practice.

3 Object Representations and
Basic Definitions

Each object is represented as a convex polyhedron, or
a union of convex polyhedra. Many real-world objects
that have curved surfaces are represented by polyhe-
dral approximations. The accuracy of the approxi-
mations can be improved by increasing the resolution
or the number of vertices. With our method, there is
little or no degradation in performance when the reso-
lution is increased. For nonconvex objects, we rely on
subdivision into convex pieces, which unfortunately,
may take quadratic time.

Each polyhedron has a field for its faces, edges, ver-
tices, position, and orientation. Each face is param-
eterized by its outward normal and its distance from
the origin. Its data structure also includes a list of
vertices which lie on its boundaries, a list of edges
which bound the face, and its coboundary - the poly-
hedron itself. Each edge is described by its head, tail,
right face, and left face. Each vertex is characterized
by its x, y, z-coordinates, and its coboundary which
is the set of edges intersecting at the vertex.

The closest pair of features between two general
convex polyhedra is defined as the pair of features
which contain the closest points. Let A and B denotes
the sets of points defining objects A and B in R3.
The distance between objects A and B is the shortest
Euclidean distance AB:

dAB = min
p € A , q € B I P - ‘ ’

and let PA E S A , PB E SB be such that

 AB =I PA - PB I

where PA and PB are a pair of closest points between
objects A and B.

4 Preliminaries
Given a pair of features, there are altogether 6 pos-
sible cases that we need to consider: (1) a pair of
vertices, (2) a vertex and an edge, (3) a vertex and a
face, (4) a pair of edges, (5) an edge and a face, and
(6) two faces.

In general, the case of two faces rarely happens.
However, in our particular application to path plan-
ning we may end up moving along maximum clear-
ance paths which keep two faces parallel, or an edge
parallel to a face. It is important to be able to detect
when we have such a degenerate case.

For each pair of features from objects A and B, first,
we need to find a pair of closest points between these
two features. Then, we need to verify that pointA is
truly the closest point of A to featureB and pointB
is truly the closest point of B to featureA. If either
check fails, a new (closer) feature is substituted, and
the new pair is checked. Eventually, we must termi-
nate with the closest pair, since we are moving closer
to the closest pair of features through each iteration.

In the next section three intuitive geometric appli-
cability tests, which are the essential components of
our algorithm, will be described. The overall descrip-
tions of our approach and the algorithm itself will be
presented in more detail in the following sections.

5 Applicability Criteria
There are three basic applicability criteria that each
feature-pair has to satisfy to be the closest features.
These are (i) point-vertex, (ii) point-edge, and (iii)
point-face applicability conditions. Here the imple-
mentation details will be briefly described.

5.1 Point-Vertex Applicability Crite-
rion

If P is truly the closest point to V , then P must lie
within the region bounded by the planes which are
perpendicular to the coboundary of V , which are the
edges touching V . This can be easily seen from the
geometry of two vertices as shown in Fig.1. If P lies
outside one of the plane boundary, then this implies
that there is at least one edge of V’s coboundary closer
to P than V . Therefore, the procedure will “walk”

I009

/
.P

Figure 1: Point-Vertex Applicability Criterion

to the edge that fails the applicability test and will
iteratively call the feature test to verify whether P
and the new edge are the closest features on the two
objects.

5.2 Point-Edge Applicability Crite-
rion

As for the point-vertex case, if P is really the clos-
est point to E , then P must lie within the region
bounded by the four planes which are superposed by
the coboundaries of E , as shown in Fig.2. Two of
these planes are perpendicular to E passing through
the head and the tail of E , respectively. The other
two planes are perpendicular to the coboundaries of
E or the right and the left faces of E . If P satisfies all
the applicability conditions, then the procedure will
return P and E as a pair of the closest features. If
P fails the applicability test of H E or TE, then the
procedure will “walk” to the appropriate end of edge
E and recursively call the general algorithm to ver-
ify whether the new vertex and P are the two closest
features on two objects respectively. If P fails the
applicability test of the right or the left face, then
the procedure will “walk” to the corresponding face
(coboundary of E) and call the general algorithm re-
cursively to verify whether the new feature (the right
or left face of E) and P are pair of the closest features.

’ Right -Face / Left-Facez

Figure 2: Point-Edge Applicability Criterion

5.3 Point-Face Applicability Crite‘rion

Similarly, if P is actually the closest point to F ,
then P must lie within the region bounded by the
planes which are perpendicular to F and containing
the edges in the boundary of F , as shown in Fig.3. If
P fails one applicability test from one of F’s edges,
the procedure will, once again, “walk” to the corre-
sponding edge and call the general algorithm to check
whether the new feature (in this case, boundary of F
- EF) and P are a pair of the closest features. In
addition, we need to check whether P lies above F to
guarantee that P is not inside the second polyhedron.
If P lies beneath F , it implies that there is at least
one feature on the given object closer to P than F
or that collision is possible. Then, the procedure will
return the closest feature of the given object to P and
proceed with the usual checking procedures.

5.4 Preprocessing Procedure
For vertices of typical convex polyhedra, there are
usually three or four edges in the coboundary. The
faces of polyhedra also have four or five edges typi-
cally. Therefore, frequently the applicability criteria
require only three to five quick tests for each round.
When a face has more than five edges in its bound-
ary or when a vertex has more than five edges in its
coboundary, the polyhedron is preprocessed by sub-
dividing the whole volume into smaller cells. That

1010

F

Figure 3: Vertex-Face Applicability Criterion

is, we divide the original polyhedron by inserting sev-
eral virtual planes and edges. After preprocessing,
each vertex of the new cell has only 4 or 5 cobound-
aries (edges) and each face has only 4 or 5 boundaries
(edges). Fig.4 shows how this can be done on a cone
with 8 boundaries (edges) on its bottom face and 8
coboundaries (edges) on its apex and on a cylinder
with 8 edges on its top and bottom faces. This pre-
processing procedure is a simple calculation, and it
guarantees that when the algorithm starts, every fea-
ture has a constant size boundary and coboundary.
Consequently, the three applicability tests described
above run in constant time.

In the next section, we will show how these applica-
bility conditions are used to update the pair of closest
features between two convex polyhedra approximately
in constant time.

6 General Description of the
Approach

Given a pair of features of two polyhedra, we apply
the appropriate applicability check from the last sec-
tion.

Except for case (1) - a pair of vertices, case (5) -
an edge and a face, and case (6) - two faces, we need
to compute the nearest points between two features,
before we can apply the applicability tests described
in the previous section. The details for computing

Figure 4: Preprocessing of a Cone and a Cylindar

these nearest points are rather trivial, thus omitted
here. (Please refer to [15], if necessary.)

(1) If the features are a pair of vertices, then they both
have to satisfy the applicability conditions imposed by
each other, in order for them to be the closest features.
If either one of the vertices fails the applicability test
imposed by the other, the algorithm will return a new
pair of features - one of the two vertices and the edge
for which the test failed, then continue checking the
new features until it finds the closest pair.
(2) Given a vertex and an edge, the algorithm will
check whether the vertex satisfies the applicability
conditions imposed by the edge and whether the near-
est point on the edge to the vertex satisfies the ap-
plicability conditions imposed by the vertex. If both
verifications return value “true”, then they are the
closest features. Otherwise, a corresponding new pair
of features (depending on which test failed) will be
returned and the algorithm will proceed until it finds

101 I

the pair of closest features.
(3) For the case of a vertex and a face, both of the
applicability tests imposed by the face to the vertex
and from vertex to the nearest point on the face must
be satisfied for this pair to qualify as the “closest-
feature pair”. Otherwise, a new pair of features will
be returned and the algorithm will be called again
until the closest-feature pair is found.
(4) Similarly, given a pair of edges as inputs, if their
nearest points satisfy the applicability conditions im-
posed by the each other, then they are the closest
features between two polyhedra. If not, one of the
edges will be changed to a neighboring vertex or a
face and the check will be done again on the new pair
of features.
(5) When a given pair of features is an edge and a face,
we first need to decide whether the edge is parallel to
the face. If it isnt, then the actual closest features
will be either one of the vertices of the edge and the
face, or the edge and some other edge bounding the
face. The former case occurs when this vertex satisfies
the vertex-face applicability condition, and when the
edge is pointing “into” the face in the direction of this
vertex. Otherwise the latter case applies. The edge
(bounding the face) to be chosen is the edge which is
closest to the original edge. If the edge and the face
are parallel, then they are the closest features pro-
vided two conditions are met. (i) The edge must cut
the “applicability prism” figure 3 of the face, and (ii)
the face normal must lie “between” the face normals
of the faces bounding the edge.
(6) In the rare occasion when two faces are given as
inputs, the algorithm has to decide if they are par-
allel. If they are, it will evoke an overlap-checking
subroutine which runs roughly at linear time in the
total number of edges of the two faces. If they are
both parallel and overlapping, then they are in fact
the closest features. However, if they are not parallel
or parallel yet not overlapping, then the first face and
the nearest edge of the second face to the first face
will be returned as a pair of new features, and the al-
gorithm will process them as the case of an edge and
a face.

A careful study of all of the above checks shows
that they all take time in proportion to the size of the
boundary and coboundary of each feature. Therefore,
after preprocessing, all checks run in constant time.
The only exception to this is when f eatureA is a face,
and f e a t u r e B lies under the plane of f e a t u r e A . In
this case, we cant use a local feature change, because

this may lead to the procedure getting stuck in a loop.
The distance between the closest pair of points cor-
responds to distance between the closest point to the
origin of the Minkowski sum and the origin itself. Ge-
ometrically, we are moving around on the “far side”
of the Minkowski sum of the polyhedra, and the dis-
tance function has many local minimum, in which we
may become trapped. When this situation occurs, we
instead search among all the features of object A to
find a closest feature to the f e a t u r e B B . This is not a
constant time step, but note that it is impossible for
the algorithm to move to such an opposing face once
it is initialized. So this situation can only occur when
the algorithm is first called on an arbitrary pair of
features.

The algorithm can take any random pair of features
of two polyhedra and find the true pair of closest f e a
tures by iteratively checking and changing features.
In this case, the running time is proportional to the
number of feature pairs traversed in this process. It is
not more than the product of the numbers of features
of the two polyhedra] because the distance between
feature pairs must always decrease when a switch is
made, which makes cycling impossible. Empirically,
it seems to be not worse than linear when started from
an arbitrary pair of features. However, once it finds
the closest pair of features or a pair in their vicin-
ity, it only takes constant time to keep track of the
closest pair as the two objects translate and rotate in
three space. The overall computational time is shorter
in comparison with other algorithms available at the
present time.

If the two objects are just touching or intersect-
ing, it gives an error message to indicate collision and
terminates the procedure with the contacting-feature
pair as returned values. The proof of algorithm’s com-
pleteness can be found in 1151.

7 Numerical Experiments

The algorithm described in this paper has been im-
plemented in Lucid Common Lisp. The input data
are a random pair of features from two given objects
in three dimensional space. The subroutine outputs
are a pair of the closest features of the two polyhedra]
as well as a pair of nearest points and the Euclidean
distance between them.

Numerous examples in three dimensional space
have been applied to test the subroutine. The ex-
amples include a wide variety of polytopes: cubes,

1012

Figure 5: Polytopes Used in Example Computations

rectangular boxes, cylinders, cones, frustrums, and a
Puma link of different sizes as shown in Fig.5. In par-
ticular, the number of facets (thus the number of ver-
tices) or the resolution for cylinders, cones and frus-
trums have been varied from 12, 20, 24, up to 48 in
order to generate a richer set of polytopes for testing
purpose.

For each pair of polytopes (placed randomly by
translations and rotations), at least 18 pairs of fea-
tures are selected to test the subroutine. The exam-
ples were run on a Sun4 SPARC station which is a
12.5 Mips 1.4 Mega flops machine.

The experiment results are briefly summarized in
Table 1. A more detailed table of running time with
comparison to the other algorithm available now [6]
is present in [15]. With initialization to the previ-
ous closest feature, the subroutine can almost always
keep track of the closest features of two given poly-
topes at constant time (about 3 to 4 msec). With-
out initialization, the algorithm runs in average time
not worse than linear in the total number of vertices.
This is what we would expect, since it seems unlikely
that the algorithm would need to visit a given feature

Table 1: Average CPU Time in Milliseconds

more than once. In practice, we believe our a l g e
rithm compares very favorably with other algorithms
designed for distance computations or collision detec-

and [19].)
tion. (please see ~31, ~41, ~51, ~61, ~71, ~161, 1171, [181,

8 Conclusion

A new algorithm for computing the Euclidean dis-
tance between two polyhedra has been presented here.
It utilizes the geometry of polyhedra to establish
three important applicability criteria for detecting
collisions. With preprocessing to reduce the size of
coboundary when appropriate, it runs almost always
in constant time if the previous closest features have
been provided and (on average) linear in the total
number of vertices if no special initialization is done.
Beside its efficiency and simplicity, it is also complete
- it is guaranteed to find the closest feature or point
pair if the objects are separated; it gives an error mes-
sage to indicate collision and returns the contacting
pair if they are just touching or intersecting.

The methodology described here can be used in dis-
tance calculations, collision detection, motion plan-
ning, and other robotics problem. Our application
is to plan obstacle-avoidance paths. By tracking the
closest feature pair of two convex polyhedra incre-
mentally, the algorithm traces out the skeleton curves
which are loci of the maxima for a distance function.

With slight modification, this algorithm can be eas-
ily extended for nonconvex objects. Since it runs in
constant time once initialized, the algorithm is ex-
tremely useful in reducing the error by increasing the
resolution of polytope approximation, when the ob-
jects have smooth curved surfaces. Refining the ap-
proximation to reduce error will no longer have detri-
mental “side effect” in running time.

1013

Acknowledgements

This work is supported by the David and Lucile
Packard Foundation, by NSF Presidential Young In-
vestigator Grant number IRI-8958577, and by Darpa
Durip Contract #N00039-88-C0292 Task4.

References

J. F. Canny and M. C. Lin. An opportunistic
global path planner. Proc. IEEE ICRA, pages
pp. 1554-1559, 1990.

J . W. Boyse. Interference detection among solids
and surfaces. Comm ACM, 22(1):3-9, 1979.

M. Orlowski. The computation of the distance
between polyhedra in 3-space. Presented SIAM
Conf. on Geometric Modeling and Robotics,
1985. Albany, NY.

S. A. Cameron and R. K. Culley. Determining
the minimum translational distance between two
convex polyhedra. Proc. IEEE ICRA, pages pp.
591-596, 1986.

J . F. Canny. Collision detection for moving poly-
hedra. IEEE Trans. PAMI, 8:pp. 200-209,1986.

E. G. Gilbert and D. W. Johnson. Distance
functions and their application to robot path
planning in the presence of obstacles. IEEE J .
Robotics Automat., RA-1:pp. 21-30, 1985.

E. G. Gilbert and S. M. Hong. A new algc-
rithm for detecting the collision of moving ob-
jects. Proc. IEEE ICRA, pages pp. 8-14, 1989.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi.
A fast procedure for computing the distance be-
tween objects in three-dimensional space. IEEE
J. Robotics and Automation, vol RA-4:pp. 193-
203, 1988.

T. Lozano-PCrez and M. Wesley. An algorithm
for planning collision-free paths among polyhe-
dral obstacles. Comm. ACM, 22(10):pp. 560-570,
1979.

B. R. Donald. Motion Planning with Six Degrees
of Freedom. PhD thesis, MIT Artificial Intelli-
gence Lab., 1984.

[ll] N. Megiddo. Linear-time algorithms for linear
programming in r3 and related problems. SIAM
J. Computing, 12:pp. 759-776, 1983.

[12] N. Megiddo. Linear programming in linear time
when the dimension is fixed. Jour. ACM, 31:pp.
114-127, 1984.

[13] M. E. Dyer. Linear algorithms for two and three-
variable linear programs. SIAM J. on Comput-
ing, 13:pp. 31-45, 1984.

[14] R. Seidel. Linear programming and convex hulls
made easy. In Proc. 6th Ann. ACM Conf. on
Computational Geometry, pages 21 1-215, Berke-
ley, California, 1990.

[15] J . F. Canny and M. C. Lin. Local methods for
fast computation of distance functions. In Prepa-
ration, 1990. U . C. Berkeley.

[16] E. G. Gilbert and C. P. Foo. Computing the
distance between general convex objects in three
dimensional space. IEEE Trans. Robotics Au-
tomat., 6(1), 1990.

[17] D. P. Dobkin and D. G. Kirkpatrick. A linear al-
gorithm for determining the separation of convex
polyhedra. J . Algorithms, 6:pp. 381-392, 1985.

[18] W. E. Red. Minimum distances for robot task
simulation. Robotics, 1 :pp. 23 1-238, 1983.

[19] P. Wolfe. Finding the nearest points in a poly-
tope. Math. Programming, 1l:pp. 128-149, 1976.

1014

