
Proceedings of the 2002 IEEE 
International Conference on Robotics & Automation 

Washington, DC * May 2002 

Gauss' Least Constraints Principle aiid Rigid Body Simulations 

StCphane Redon, Abderrahmane Kheddar, Sabine Coquillart ' 
Abstract 

Most of well-known approaches ,for rigid body siiizulatioiis 
are forinulated iii tlie contact-space. Tliaiiks io Gauss' priiz- 
ciple of least coiistraiiits, tlie frictioiiless dyiiaiiiics pi-oblenis 
are forinulated in a iiiotioii-space. While the two forinula- 
tioiis are niatheiiiaticallj equivaleiit, they are riot coinpiitatioii- 
ally equii-aleiit. The iiiatiori-space~foriiirilatioii is better coiidi- 
tioiiiied, always sparse, iieeds less ineinory, aiid avoids some 
crrinecessary computations. A preliiiiiiiaiy experinzeiital coin- 
parison suggests that an algoritlini operating in the motion- 
space takes advantage of sparsic, to perform increasiiiglj bet- 
ter than a contact-space algorithiii as the average nuniber o f  
contact points per object iiicreases. 

1 Introduction 

Rigid body simulations have numerous offline or online appli- 
cations: virtual environments, virtual prototyping, teleopera- 
tion, assembly tasks, interactive tolerance tests, video games. 
Many situations require the simulation of classical physics 
laws. This explains why rigid body simulation is such an ac- 
tive research field. 

While moderately complex objects can be handled in real-time 
by the known simulation systems[4], complex objects may re- 
quire many computations as the number of contact points in- 
creases, and the strategy is often to display complex objects 
while computing the simulation on simplified objects[9]. We 
believe that the reason for this is that the simulation systems 
do not make explicit use of the number of degrees of free- 
dom (dof) in the simulation'. Thus, as the average number of 
contact points per object increases, the simulators are not as 
efficient as they could be. 

Note that the average number of contact points per object 
can increase dramatically as the objects complexity increases. 
Consider two contacting cubes. If the cubes are almost aligned 
and one cube is slightly rotated, then eight contacts occur. 
Now, if the cubes are replaced by if-sided polyhedral cylinders 
in a similar configuration, then 211 contacts occzir. Other ex- 
amples can easily be found: threaded screws insertion, tightly- 
packed objects, object clusters. Also, the fact that tolerance 
values are used in collision detection increases the number of 
contact points. 
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'Of course, the collision detection is also slowing down the system. 

To our knowledge, most of recently proposed (constraint- 
based) solutions able to handle unilateral constraints fomiulate 
the dynamics problems (ie the constrained iizotion problem 
and the collisioii resolutioii pi-obleiii) as a linear complemen- 
tarity problem (LCP) (see for example [2][4][17][18][19]). 
The LCP relates contact forces and accelerations or veloci- 
ties. For example, in a frictionless system, i f f  and acp are two 
vectors in Rm describing the normal contact forces and the rel- 
ative normal accelerations at the in  contact points, then there 
exists a iii x iii matrix A and a vector b in Rm such as: 

acp = Af + b, acp 2 0, f 2 0, aTpf = 0 (1 )  

As a result, the number of degrees of freedom of the uncon- 
strained system is not explicit. In other words, problem (1 )  is 
a contact-space forniulation[ 171. 

This paper uses Gauss' principle of least constraints to for- 
mulate both dynamics problems in the frictionless case in a 
inotiorz-space. In the motion-space, an algorithm solving the 
dynamics problems is able to make explicit use of the num- 
ber of dof in the simulation and avoids unnecessary com- 
putations. Note that some authors have presented formula- 
tions that explicitly contain the number of dof in the system. 
Lotstedt[ 133 uses a formulation closely related to Gauss' prin- 
ciple, but doesn't handle elastic collisions. Baraff[6] presents 
a linear-time algorithm for acyclic articuled bodies, but then 
uses a contact-space formulation[4] to handle unilateral con- 
tacts. Milenkovic[l4], too, makes explicit use of the number 
of dof by formulating the problem as a quadratic programming 
problem, but requires many variables to enforce all the dynam- 
icsicollision conditions. 

This paper is organized as follows. Gauss' principle is re- 
called in Section 2. A motion-space formulation of the fric- 
tionless dynamics problems is derived from Gauss' principle 
in Section 3 to form similar minimization problems. Section 
4 reduces the minimization problems to a well known nearest- 
point problem (NPP) which will be our motion-based formula- 
tion. Section 5 compares both fomiulations from a theoretical 
and practical point of view. It shows that while the formula- 
tions are mathematically equivalent, they are not coniputatioii- 
ally equivalent: the motion-space formulation is better condi- 
tionned, is always sparse, requires less memory to store the 
data and avoids some unnecessary computations. An exper- 
imental comparison is made between two typical algorithms 
that solve the LCP problem and the NPP problem. A prelim- 
inary comparison suggests that, thanks to a sparser fomiula- 
tion, the algorithm operating in the motion-space (ie solving 
the NPP problem) is able to perform increasingly better than 
the algorithm operating in the contact-space, as the average 

0-7803-7272-7/02/$17.00 0 2002 IEEE 51 7 

mailto:stephane.redon@inria.fr


number of contact points per object increases. Section 6 con- 
cludes. 

2 Gauss’ least constraints principle 

Few references about applications of Gauss’ principle of ‘ 
least constraints[lO] can be found. However, it has recently 
prompted a renewed interest[7][20]. Especially, Gauss’ prin- 
ciple has been used in the special case of initially motionless 
objects[5] and, in robotics, to compute the dynamics of redun- 
dant manipulators[8]. Udwadia[20] shows that Gauss’ prin- 
ciple leads to a closed-form equation of motion when all the 
constraints are bilateral. An immediate advantage of Gauss’ 
principle over the principle of virtual work, used in LCP meth- 
ods, is that it allows to give a very intuitive formulation of the 
motion of a constrained system. Actually, it is so intuitive that 
it is often rediscovered and/or used without mentioning Gauss 
([141). 

Though it was initially expressed for a set of point masses, it 
applies also for a frictionless system of rigid bodies subject 
to geometrical (unilateral or bilateral) constraints[7][ 121, and 
can be simply expressed thanks to generalized accelerations 
and masses. Let’s consider a contact group2 of it mobile ob- 
jects. A rigid body i has only six degrees of freedom, and 
its acceleration is split into a translational term a,(Gi), which 
is the acceleration of the object’s center of mass, and a rota- 
tional term ai. These two vectors are in R3. The accelerations 
of the n (potentially) mobile objects can be stacked in a single 
611-dimensional generalized acceleration vector a, while the 
masses and (time-dependant) inertia tensors can be stacked in 
a single 611 x 6n generalized mass matrix M. This matrix is 
block-diagonal and is symmetric positive definite (SPD). 

Now, let a,, denote the (generalized) unconstrained accelera- 
tion of the contact group, that is, the accelerations the con- 
tact group would have were it not subject to geometrical con- 
straind. a, is in R6”. Gauss’ principle states that the gen- 
eralized constrailled acceleration a, minimizes the following 
scalar function of a over the set of possible accelerations: 

1 1 
G a ( a )  = - ( a - a l , ) W a - a I , )  2 = TIIa-al,IIL (2 )  

The possible accelerations are the accelerations which are 
’ compatible with the current contact group’s configuration. 
Note that since M is SPD, I l . l l ~  is a well-defined non- 
euclidean norm. By analogy with the kinetic energy E = 
$vrMv of the system, this norm is usually called kinetic norin. 
Thus, Gauss’ principle amounts to minimize the kinetic dis- 
tance between the generalized accelerations a and a,, over the 

%roughout this paper, a contact group is a set of mobile objects. Two 
objects i and j are in the same contact group if and only if there exists a chain 
of contacting mobile objects from object i to object j .  At any moment. any 
contact group is dynamically independent of the others. Therefore, in a rigid 
body simulation, the contact groups can be examined separately when solving 
the dynamics problems. 

”or example, the unconstrained acceleration of a cube laid on a table and 
subject to gravity g is precisely 9. 

Figure 1: G a m ’  principle allows 10 find veni easily the panicle’s con- 
strained acceleration. The particle‘s unconstrained acceleration 
a,, is the gravity g. The possible accelerations are given by the 
non-perietmtiori constraint due to the slope. The particle’s con- 
strained acceleration is the closest possible acceleration to its un- 
constrained acceleration. 

set of possible accelerations4. Making implicit the fact that the 
distance is the kinetic one, Gauss’ principle can be stated even 
more simply: at any monient, a contact group’s constrained 
acceleration is the closest possible acceleration to its uncon- 
strained acceleration. 

In this formulation, the explicit unknowns are the objects’ ac- 
celerations, and the contact forces are implicit: the problem 
is stated in the motion-space, and not in the contact-space, as 
in LCP methods[l7]. Thus, the number of dof (6n) of the un- 
constrained contact group is explicit. Figure 1 shows an ap- 
plication of Gauss’ principle for a particle laid on a slope and 
subject to gravity5. 

3 Dynamics problems formulation 

3.1 Constrained motion 
The constrained motion problem for a contact group of n ob- 
jects is a direct application of Gauss’ principle, and all we have 
to do is express the set of possible accelerations. This set can 
be derived from the traditional contact mode1[3][4][ 171. Let’s 
denote two contacting objects by i and j .  I is the contact point, 
n is the surface normal at I, directed from j to i. Depending 
on the object it belongs to, I is denoted by 1; or lj. Using this 
notation, the non-penetration constraint on the contact points’ 
accelerations is[3]: 

dn 
dt 

( a ; ( l ; ) - a j ( I j ) ) . n + 2 . ( ~ i ( I ; )  -vj(Ij)).- 2 0 (3) 

In a contact-space approach, this constraint would be used to 
form the matrix A and the vector b of the introduction, which 
relate contact forces and normal accelerations at the contact 
poinrs. However, using Gauss’ principle, we need to express 

4Since Go and fi are minimized by the same a,. 
‘For clarity, the examples given in this paper will concern particles. For 

isolated particles, the object space and the accelerations space can be super- 
imposed. and the kinetic distance is proportional to the euclidean distance. 
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this constraint on objects’ accelerations. This is done simply: 
for any rigid object k ,  we have a k  ( J k )  = ak (Ck) + ak A GkTk + 
a k  A (wk A GkIk), where is the (known) rotational veloc- 
ity of object k .  Since v;(l;), vj(lj) and dn/dt are known[3], 
inequation (3) is linear in the translational and rotational ac- 
celerations of the contacting objects. Stacking the nz non- 
penetration constraints (3) yields a single constraint on the 
contact group’s acceleration Ja 3 c, where J is the well-known 
111 x 611 jacobian[l7], and c is in Rfn. This general constraint 
defines the convex set of possible accelerations {a : Ja c}. 
Finally, the constrained accelerations are: 

A common property of frictionless systems is immediately 
visible. Since a, minimizes a (non-euclidean) distance over 
a convex set, it is unique. Note that equation (4) yields the 
constrained accelerations for a contact group containing any 
number of objects subject to any number of (unilateral or bi- 
lateral6) constraints. 

3.2 Resolving collisions 
Let us now derive a formulation of the collision resolution 
problem in the velocities space from Gauss’ principle. Let 
v denote a generalized velocity of a contact group of 11 ob- 
jects (v is in Rhrr),  and let v- denote the (generalized) velocity 
that occurred immediately before the collision. The problem 
is to find v+, the (generalized) velocity that will occur imme- 
diately after the collision. To do so, we make two classical 
assumptions[l7]: the first assumption is that the collision du- 
ration is infinitesimal[l6], and the second assumption is Pois- 
son’s hypothesis[ 151, which relates the objects’ velocities at 
the contact points. As a resuIt of the first assumption, we 
can consider that the object’s positions during the collision, 
as well as the constraints acting on them, remain unchanged. 
Moreover, the exterior actions can be neglected compared to 
the intensity of the actions of the constraints. Accordingly, 
a, = 0. Let’s assume now that the generalized acceleration 
is constant over the whole duration of the collision dt. This 
yields Y+ - v- = adr. Since a,, = 0, Gauss’ principle allows 
to state that v+ minimizes G,,, where G,,(v) = ~ I I v  - v-112, 
over the velocities that can occur immediately after the col- 
lision. These possible separating velocities are found simply. 
In the case of (possibly) simultaneous collisions, Poisson’s hy- 
pothesis yields the collision response constraint on the objects‘ 
velocities, for any of the in contact points (colliding or not)): 

where e is the coefficient of restitution for the objects involved. 
Again, the velocities at the contact points depend on the ob- 
jects’ translational and rotational velocities. Consequently, in- 
equation (5) is a linear function of the translational and rota- 
tional velocities of objects i and j .  Stacking the 112 collision 

“Since bilateral constraints can be expressed as pairs of unilateral con- 
straints. 

Figure 2: A particle has jirst collided a niorioriless object. The possible 
velocities are given by the collision response cortsrrainf, which 
depends on e. the coefficient of restitution. The particle’s veloc- 
ity immediately ofrer the collision is the closest possible velocity 
to the paiticle’s velocity immediately before the collision. 

response constraints yields the set of possible (separating) ve- 
locities {v : Jv 3 d}, where J is a in  x 612 jacobian and d is 
in Rfn. Finally, the velocities occurring immediately after the 
collision are: 

Once again, this result can be stated in a very elegant way: 
in a contact group, the Idcicities occurriiig inznzediately ufter 
a collision are the closest possible velocities to the velocities 
that occurred iriinzediately before the collision. Figure 2 shows 
a collision resolution for a particle that has just collided a mo- 
tionless object. 

4 Solving the dynamics problems 

Section 3 has reduced both dynamics problems to the same 
minimization problem: 

(7) 

where xIr ,  M, J and c are known. If the contact group contains 
11 objects subject to in  (unilateral) constraints, then x and xrr 
are in R6Ir, E is in R“, and J is in Rntxbfr.  Since h.I is SPD, it 
can be factored as the product of two positive definite 611 x 611 
matrices7: M = Q ~ Q  

It is now possible to make the contact forces (or impulses) 
visible, thanks to the lagrangian method. Hovever, we will 
end with a rnotiori -basedfori~iiilatioi~. The lagrangian function 
associated to problem (7) is: 

(8) 
1 
2 

L(x.h) = - I / x  - xr,)l& - hT(Jx -c )  

The vector h is in R”’ and represents contact forces or im- 
pulses, according to the dynamics problem being solved. 

’The objects’ local inertia tensors are constant and can he factored offline. 
The matrix Q can thus he computed in O(n). 
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Since 

(9) 

the variable x can be eliminated (temporarily losing sight of 
the objects' motion). Thus, we must minimize: 

(10) 
1 
2 

f ( h )  = -hTJM-'JTh-hhT(c-Jx,,) 

under the constraint h 2 0. Assuming the contact group's state 
is consistent, there exists a vector k such that Jk = c. We now 
use the factorization of M to retrieve a motion-based formula-. 
tion. Let s = Q(k - x,,) and JQ = JQ-I. Minimizing (10) is 
equivalent to the following iiort-negative least-squares prob- 
/em (NNLSP): 

Since J i h  and s are both in R61 and since, from equation (9), 
x = Q-'J$h $- xu, this formulation is motion-based. 

Geometrically, problem (1 1) consists in projecting s on the 
positive cone generated by the rows of JQ: C = {x : x = 
Jgh and h 2 0). Problem (1 1) is thus a iiearest-point prob- 
lein (NPP). 

5 Comparing formulations 

5.1 Mathematical equivalence 
The equivalent contact-space formulation is obtained from 
problem (1 1). Indeed, the necessary and sufficient conditions 
of problem (1 1) are: 

J M - I  J%+ JX,, - c 2 0, 
h > 0 ,  (12) { (JM-'JTh+ Jxll- ~ ) ~ h  = 0. 

This formulation is exactly' the one given in Baram41 or 
Ruspini[ 171. In this formulation, the number of dof in the con- 
tact group is implicit, since all vectors are in Rm, and since the 
factorization of the operational inertia matrix JM-' JT is hid- 
den. 

At this point, the reader may wonder why we did not derive 
problem (11) directly from the LCP formulation (12). After 
all, the only tricks involved are factoring the mass matrix M 
and noticing that Jx,, - c is in the column space of JQ-I . How- 
ever, we believe that the insight into the intuitive underlying 
physics offered by Gauss' principle will help to understand 
why an algorithm solving problem (1 1) should be able to per- 
form better than an algorithm solving problem (12). 

*Note that for clarity, the formulations given in this paper are for 6-dof 
rigid bodies. However, Gauss' principle holds in reduced coordinates, and 
can he used along with the general conlact model of RuspiniI 171. Besides. the 
mathematical equivalence given in this section is a proof of this, since all that 
i s  required is factoring hl. 
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5.2 Computational difference 
Whereas problems ( 11) and (12) are mathematically equiva- 
lent, they are not compututioi?uI!\, equivalent for essentially 
four reasons: 

ill-conditionlied matrix: the condition number of 
JM-'JT is the square of that of Jp (see Gill[ll], for 
example). As a result, problem (12) is much more ill- 
conditionned than problem (1 l), and is therefore much 
more sensitive to round-off errors. 

sparsity: Since M and Q are block-diagonal matrices, 
and since J is always sparse, the matrix Jp involved in 
problem (1 1) is always sparse as well. On the contrary, 
JM-' Jr may be dense[6]. 

ineino~y When the involved matrices are considered 
dense, it requires much more memory to store JM-' JT 
(O(m2))  than to store Jp (O(nm)) as the number of con- 
tact points per object increases. Moreover, when the 
matrices are considered sparse, JQ always require O(in) 
only, while JM-' JT may still be dense. 

0 uiirtecessary coniputatioiis: an algorithm solving prob- 
lem (12) will have to enforce conditions on both contact 
forces (or impulses) h and objects' accelerations (or ve- 
locities) at the contact points xCp. As a result, this algo- 
rithm will have to maintain the in coordinates of xcp while 
solving problem (12). However, the m coordinates of xcp 
are not independent, since the contact points belong to 
rigid bodies: these coordinates could be deduced from 
the objects' motions. Since these objects' motions are 
not readily available in a contact-space formulation, the 
algorithm will perform unnecessary computations. In the 
motion-space formulation, an algorithm is able to operate 
on the 611 truly independant motion coordinates only, and 
on the corresponding coefficients in Jp. 

As a preliminary conclusion, let's state the difference between 
a contact-space formulation and a motion-space formuIation 
more simply: in a contact-space approach, the contact forces 
are computed for thenzselves, and are tlien used to compute 
the object's motions. In a motion-space approach, the contact 
forces are computed along witlt the objects' inotioits9. 

5.3 Experimental comparison 
There are numerous ways to solve the nearest-point problem 
(12). However. its geometrical structure has led the opti- 
mization community to develop specific algorithms, generally 
split into two categories: coiiibiriatoriul algorithms (active-set 
methods), and desceiit methods. Algorithms in the first cat- 
egory look for the solution by moving from face to face in 
the cone. Algorithms in the second category are interior-point 
methods or exterior-point methods[ 11. For typical rigid body 
simulations, however, it is simpler to use active-set algorithms 

'Since the objects' motions are directly related to JLh. 



(as is the case in contact-space formulations: at least for fric- 
tionless systems, the LCP problems are solved by Lemke’s al- 
gorithm or Dantzig’s algorithni[2][4][ 17][ 18][ 191). 

In an attempt to make an experimental comparison of both 
approaches, we chose to implement Baraff’s well-bown 
algorithm[4] to solve problem (12). This algorithm, in the 
frictionless case, is equivalent to Dantzig’s algorithm for 
LCPs. For the NPP problem (1 l), we chose Wilhelmsen’s 
algorithm[21] for several reasons. It is an active-set method, 
easy to implement and, most of all, is closely related to 
Dantzig’s algorithm, making thus the comparison more per- 
tinent. Actually, as most pivotal methods, both algorithms 
have an outer loop and an inner loop. In the inner loop, 
both algorithms need to solve linear systems involving sub- 
matrices of JM-’ JT (note that consequently, the assessment 
about ill-conditionning doesn’t hold anymore. However, this 
allows to compare efficiency under equivalent robustness as- 
sumptions). The difference between the algorithms resides in 
the fact that Wilhelmsen’s algorithm operates on Jbh and h, 
while Dantzig’s algorithm operates on xcp and h. We used the 

p=45 1 1.01 I 1.08 I 1.5 I 1.08 I 1.03 

Table 1: Dense case: The ratio of execution tiines exhibits no significant 
behavior. 

same guidelines to implement both algorithms. The matrix 
JQ and the matrix JM-’JT were treated as dense in a ver- 
sion of the algorithms, and as sparse in another. Cholesky 
factorizations were used to solve the linear systems in both 
cases. However, we did not implement an incremental factor- 
ization routine, for either algorithm, as suggested in [4]. Since 
preliminary tests did show that both algorithms performed ap- 
proximately the same number of linear systems resolutions, no 
algorithm would have benefitted significantly more than the 
other. Note that the same tolerance value was used in both 
algorithms (E = 

Note that we are totally aware that, despite all our efforts to 
implement both algorithms with the same guidelines, it may 
still be argued that comparing execution times is not always 
pertinent. However, we are far less interested in the ratio of 
execution times than in the behavior of this ratio. For a given 
test, a random matrix J was computed in the following way. 
For any row, two integers where randomly chosen between 1 
and 1 7 .  These (possibly equal) integers where used to place 
two sets of six coefficients in a row, resulting in a typical jaco- 
bian matrix. The fact that the chosen integers could be equal 
enabled to simulate object/environment contacts. To obtain a 
vector c consistent with J, a random vector k was chosen in 
R6” and c was set to Jk. The entries of the equivalent LCP 
problem were computed as in (12), with hl set to the 612 x 612 

I n=2 I n=7 1 n=12 I n=17 I n=22 I 

Table 2: Sparse case: the motion-space algorithm takes advantage of spar- 
sity to perform increasingly better than the contact-space algo- 
rithm, as the number of contacts per object increases. 

identity matrix (which has obviously no impact on the com- 
parison). The two parameters of the tests were the number of 
objects 12 and the (average) number of unilateral constraints 
per object p .  For a given pair ( iqp ) ,  50 execution times were 
obtained for Dantzig’s and Wilhelmsen’s algorithms: f? and 
ry, respectively, for 1 < i 6 50. The ratio of average execu- 
tion times was then: 

Note that we chose 11 and 1.7 such as both problems could be 
stored in memory and didn’t need disk access. The results 
are reported in Table 1 for the dense case (ie dense for both 
algorithms), and in Table 2 for the sparse case (ie sparse for 
both algorithms). Again, let’s emphasize that we are not re- 
ally interessed in the ratio of execution times for irserf, but in 
its behavior. This behavior is demonstrated in Tables 1 and 
2: the algorithm operating in the motion-space takes (a better) 
advantage of sparsity to perform ii~creasii7gly better than the 
algorithm operating in contact-space, as the number of contact 
points per object increases. Considering now the ratio in it- 
self, and considering the fact that we used the same guidelines 
to implement both algorithms, we may (carefully) state that a, 
motion-space algorithm performs better than a contact-space 
algorithm (at least for our implementation and for the tests 
we did). It should be clear that when the objects are simple 
and/or that there are few contacts per object, a contact-space 
approach will (not surprisingly) perform better. As the objects 
complexity increases, however, the motion-space formulation 
seems to be preferable. 

6 Conclusion and results 

Thanks to Gauss’ principle of least constraints, the dynam- 
ics problems occuring in a frictionless rigid body simulation 
(the constrained motion problem and the collision resolution 
problem) have been formulated in the motion-space. While 
the resulting formulations are mathematically equivalent. they 
are 17ot coiirp~rrurior~all~ equivulent. The main reasons for this 
is that the motion-space formulation is better conditionned, is 
always sparse. takes less memory, and is able to avoid some 
unnecessary computations. A preliminary experimental study 
suggests that an algorithm operating in the motion-space is 
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131 D. Baraff. Analytical Methods for Dynamic Simula- 
tion of Non-penetrating Rigid Bodies. In Computer Graphics 
(Proc.SIGGRAPH), volume 23, pages 223-232. ACM, July 1989. 

141 D. Baraff. Fast Contact Force Computation for Nonpenetrat- 
ing Rigid Bodies. In SIGGRAPH 94 Proceedings, pp 23-34. ACM 
SIGGRAPH, 1994. 

151 D. Baraff and R. Mattikalli. Impending Motion Direction 
of Contacting Rigid Bodies. Technical report CMU-RI-TR-93-15, 
Robotics Institute, CMU, June, 1993. 

16J D. Baraff. Linear-time Dynamics using Lagrange Multipliers. 
In SIGGRAPH 96 Proceedings, pp 137-146. ACM, 1996. 

171 H. Baruh. Analytical Dynamics. WCB McGraw-Hill, 1999. Figure 3: Towards assernbh rash ;ti 011 irtanersiw eriiironrnent (edited 

181 H. Bruyninckx and 0. Khatib. Gauss' Principle and the Dy- 
namics of Redundant and Constrained Manipulators. In Proceedings 

photograph of oil; simdalor). Assembly tasks should benefit 
from an algorithm operating in a motion-space. as the increase in 
the objects complexity may result in many contact points. 

of ICRA 2000, pp 2563-2568. 

able to take advantage of sparsity to perform increasingly bet- 
ter than a contact-space algorithm as the number of contact 
points per object increases". As a conclusion, we note that the 
motion-space formulations given in this paper presently hold 
for frictionless systems only. Whereas frictionless simulations 
stand on their own and have practical applications (virtual pro- 
totyping, assembly tests and fitting operations for example), 
we believe that the encouraging results constitute a strong in- 
centive to develop friction-handling algorithms derived from 
the motion-space approach. This problem is currently un- 
der research. Meanwhile, a complete frictionless rigid body 
engine, enabling second-order and first-order world' I simula- 
tions, has been implemented and successfully tested with in- 
dustrial (aeronautics) data in an immersive environment (Fig- 
ure 3). 
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