
HAPTIC RENDERING OF SURFACES DEFINED BY IMPLICIT FUNCTIONS

Kenneth Salisbury
Christopher Tarr

MIT AI Lab and SensAble Technologies, Inc.
jks@ai.mit.edu and ctarr@sensable.com

ABSTRACT
This paper presents a method for computing the contact

forces which must be imposed on a human (via a haptic inter-
face) to evoke the sensation of touching surfaces described by
implicit equations of the form S(p) = 0. The algorithm com-
putes in real-time the forces of interaction which would arise
from a point interacting with a real surface of the given shape.
It models the forces of interaction which would arise when con-
tacting linearly elastic material with surface friction. At each
instant, a tangent plane to the surface at the contact point is
computed and used to track the contact point's motion and pre-
vent it from passing though the surface. A method using cutting
planes to limit the extent of these surfaces is described. Though
the rendering techniques are presented in the context of implicit
surfaces, they can be applied to other classes of surfaces.

NOMENCLATURE
S, S(p) implicit function de�ning a surface
T tangent plane to S
N normal to S
p point in 3D space, (x; y; z)
p0 the haptic interface point
p1 the surface contact point (SCP)
p00 �rst approximation to p0, on T
Sname a named surface or cutting plane
pi;k point i at time k
Tk tangent plane at time k

1. INTRODUCTION
Haptic interaction is the process by which humans touch,

explore, perceive and manipulate objects. It is the bilateral na-
ture of this interaction, in which we both receive stimulation
from and do work upon the environment, that makes the haptic
modality unique among our senses. As a relatively new area of
study in human-computer interaction it o�ers types of percep-
tion and degrees of expressiveness previously unavailable.

Recent advancements in display technology have made it
possible to produce compelling computer-generated haptic im-
ages that observers can feel and manipulate. In (Salisbury, et
al., 95) we described our preliminary e�orts in enabling people
to feel computer simulated objects via use of the PHANToM

haptic interface. An enormous amount of new research activity
has begun to focus on how to better generate haptic illusions
and how to utilize this new interaction modality (Salisbury &
Srinivasan, 96).

In order for \observers" to feel simulated objects, three com-
ponents are necessary: 1) a means for tracking motion of the ob-
server's interaction point and imposing haptic stimuli (force and
other haptic e�ects) on the observer, 2) a model of the simulated
object, and 3) a \haptic rendering algorithm" to compute the ap-
propriate stimulation from consideration of observer motion and
the object model.

Figure 1: A whi�e cube that can be felt. The implicit
function for this surface is found by subtracting a sphere
from a cuboid with the resulting equation: S(x; y; z) =�
x8 + y8 + z8

�8
+

�
x2 + y2 + z2 � 0:44

�
�8

� 1.

Previous haptic rendering algorithms fall into two categories,
stateless potential �eld algorithms and surface contact point al-
gorithms. The �rst category encompasses algorithms which sim-
ulate volumes that generate haptic interaction forces based only
on the current position of the user interaction point (i.e. the tip

Salisbury & Tarr
Salisbury, J.K. and Tarr, C., ``Haptic Rendering of Surfaces Defined by Implicit Functions,'' Proceedings of the ASME 6th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Dallas, TX, November 1997, pp. 61-68.

of the PHANToM). These volumes can be described as density
�elds or potential �elds and only approximate interacting with
a surface by generating forces toward the surface from any lo-
cation internal to the volume. The potential method discussed
in by Massie & Salisbury (1994) and several voxel based haptic
algorithms (Avila 1996) fall into this category. Unfortunately,
surfaces with small features relative to the distance traveled be-
tween interaction points can be lost or passed through without
notice, since past history is not taken into account when gener-
ating forces and determining the type of contact.

To solve this problem, a second class of algorithms called
surface contact point algorithms was created. These algorithms
are strictly intended to model the surface geometry of an object
as opposed to a volume or density properties. These algorithms
take into account the path traveled between each discrete loca-
tion of the interaction point. They can determine the direction
from which a surface was penetrated and whether or not the in-
teraction point should be allowed to pass through or be forced
toward an appropriate location on the surface. The �rst algo-
rithm taking advantage of this approach was described by Zilles
(Zilles, 1995; Zilles & Salisbury, 1995). His algorithm permits
rendering the important class of polyhedral modeled shapes and
prevents the surface contact point from passing through the ob-
ject even in the case of small features. Ruspini et al. (1996) also
addresses this problem in the rendering of polyhedral shapes.
Zilles (1995), Morgenbesser and Srinivasan (1995), and Ruspini
also investigated the use of \force shading" techniques to alter
apparent surface normals to give the sensation of curvature to
the polyhedon's facets (much in the spirit of Phong shading).
Techniques for rendering intrinsically curved object models have
been addressed by Thompson et al. (1997) for NURBS surfaces
and in this paper for surfaces described by implicit equations.

2. SURFACE DESCRIPTION BY IMPLICIT FUNCTIONS
Implicit functions take the form S(p) = 0. Points p which

satisfy this equation are de�ned to be on the surface S and de�ne
the boundary of the enclosed volume. For example, the surface
of a sphere is represented by the equation x2 + y2 + z2 � 1 = 0.
The implicit function representation provides a compact, ana-
lytic, continuous surface that can represent many shapes, pro-
vide well de�ned surface normals and derivatives, and a�ords
simple collision detection tests.

Although implicit surfaces are commonly used to represent
simple geometric shapes such as quadric and super-quadric sur-
faces, there is an abundance of exciting work in the 3D graphics
�eld using implicit functions to model complex surfaces. Blinn
(1982) used them for molecular modeling to provide artistic va-
riety and scienti�c accuracy. Recent e�orts have developed to
reconstruct surfaces in implicit form from scattered points (Ir-
fan 1992; Savchenko 1995). Others have found techniques to use
them for implicit solid modeling (ISM) for engineering design
(Storti, et al. 1992).

Additionally, it has long been recognized that useful and log-
ical shape description can be accomplished through combination
of primitive shapes. Such constructive solid geometry (CSG)
techniques perform regularized Boolean set operations between
shapes. These techniques can equally be applied to implicitly

de�ned shapes. One of the simplest versions of this approach,
developed by Ricci (1973), permits pseudo-Boolean operations
to be performed between shapes with the useful side e�ect of
providing controllable blending. This method actually combines
the function equations to form a new composite equation that
represents the new surface after performing the boolean oper-
ation. The object shown in Figure 1, known as a whi�e cube,
can be modeled with an implicit equation derived using this tech-
nique. The shape is found by subtracting a sphere from a cuboid
with a blending exponent of 8.

We have found that CSG can also be performed without
explicit derivation of the equations for the combined objects by
real-time consideration of the individual objects and between ob-
jects of mixed polyhedral and implicit representation. This has
been implemented in the GHOST Toolkit described in Section 7
and permits haptic perception of combined, even independently
moving, objects.

In the following sections we discuss how to compute, in real-
time, the forces necessary to simulate feeling the rich class of
shapes representable by implicit equations.

3. PROPERTIES OF THE IMPLICIT REPRESENTATION

Property 1: Inside-outside function for S(p)

If a S represents an orientable surface then we
may detect whether an arbitrary point p is inside,
on, or outside the volume enclosed by the surface by
checking the value of S(p). If S(p) < 0, p is inside
the volume enclosed by surface S, if S(p) = 0, p is
on the surface S, otherwise p is outside the volume
enclosed by surface S. Further the magnitude of
S(p) is related to the distance from S. It also is
interesting to note that S can be inverted by simply
reversing the sense of the above tests, permitting
one to feel the inside of surfaces as easily as the
outside.

Property 2: The gradient of S(p)

The gradient of S(p),rS(p), is de�ned asrS(p)
= dS(p)=dp = (@S(p)=@x; @S(p)=@y; @S(p)=@z).
It is a three-element vector which points in the di-
rection which p should change to maximize change
in the (scalar) value of S(p) for incremental changes
in p. For points p on S its components are propor-
tional to the outward pointing surface normal at p.

4. RENDERING A SURFACE S(p) = 0, FRICTIONLESS CASE
The goal of the following algorithms is to compute the forces

which would be exerted on a rigid probe point interacting with
an object surface of which is given by S(p) = 0. In order to
prevent penetration of the surface S we will solve for and track
a surface contact point p1. A tangent plane T will be associated
with each successive value of the point p1 and used to preserve
the state of contact in a physically meaningful way.

Finding a point on S nearest to given point p
We �rst present an algorithm that, given a seed point

pseed�point in the neighborhood of S, will �nd the nearest point
on S, psurface�point. This algorithm will be used in two ways
as described in later subsections and is derived in detail in Ap-
pendix 1.

The nearest point could be found by using Lagrangian mul-
tipliers to �nd psurface�point that minimizes
jjpseed�point � psurface�pointjj subject to the constraint
S(psurface�point) = 0. For non-trivial (i.e. non-planar) S this
would involve �nding the roots (of possibly large) equations and
inspecting candidate solutions for the minimal result. Instead,
we exploit the fact that pseed�point is in the neighborhood of S
and that the gradient of S(pseed�point) (rS) points in a direction
that is a good approximation to the direction toward the closest
point on S. A prescribed step from the seed point is taken in the
gradient direction. The size of the step is a function of the S rS.
This process is repeated until the step size becomes su�ciently
small. Terminating when the step size becomes small does not
directly indicate we have reached our goal, however it works well
in the neighborhood of S. Checking for S(psurface�point) = 0
would be more exact but is unnecessary here. Thus, given a
seed point pseed�point, we perform the following computation:
Algorithm 1

p = pseed�point

do
�p = �

S(p)rS(p)

rS(p)�rS(p)

p = p+ �p
until (jj�pjj < �)
psurface�point = p

The resulting psurface�point has been found to be good ap-
proximation of the nearest point on the surface to the initial
seed value of pseed�point when the seed point is near S and �
is su�ciently small. Typically, in our experiments only 1 to 3
iterations of the above algorithm are required.

Finding a surface contact point on S at first contact
The haptic interface point, p0, is de�ned to have the co-

ordinates of the tip of the haptic interface (e.g. the user's �n-
gertip, stylus point, the tip of the PHANToM haptic interface,
etc.) when this point is outside the surface, S(p0) > 0 and no
interaction force is exerted on the user. The �rst time p0 pene-
trates the surface (i.e. S(p0) goes negative), we declare the state
of S to be TOUCHED. Using Algorithm 1 with a seed value
of pseed�point = p0, we compute the �rst surface contact point,
p1 = psurface�point. We then compute the force, F = k�(p1�p0),
to be applied to the user. To prepare for the next tick, we de�ne
the outward pointing surface normal N to be a unit vector in
the direction of the gradient of S(p1) (i.e. N = rŜ(p1)) and
de�ne the associated tangent plane T for this surface contact
point. Figure 2 illustrates the geometry.

Finding subsequent surface contact points on S
During subsequent ticks (times steps) the haptic interaction

point p0 will penetrate further into (or even beyond) the volume
enclosed by S. Thus, following the gradient from p0 directly to

Figure 2: Illustration of surface contact point p1 found via
Algorithm 1 after �rst entry into the volume S by p0.

the nearest point on S as above will not be appropriate. Instead,
we use the tangent plane T computed above to constrain suc-
cessive values of p1 from moving inside S. T will be updated
at each tick as the surface contact point p1 moves across S. In
an important way, tracking T as it glides over S permits us to
capture the state of the contact interaction in a physically mean-
ingful sense. We can imagine the plane T being pulled through
space by the point p0 to which T is attached by an elastic band.
When p0 passes through the surface S, the plane is prevented
from passing through. The plane's contact point with the sur-
face de�nes p1 and the stretching of the elastic band gives rise
to force F . In the absence of friction, this plane moves to locally
minimize the energy stored in the elastic connection.

Thus, during subsequent ticks (until contact is broken) we
�rst drop a perpendicular from p0 to T to de�ne point p00, a
�rst approximation to the surface contact point. We then use
the iterative procedure of Algorithm 1, with p00 as the seed
value, to �nd p1 on S as the closest point to p00. This is a key
point in the algorithm in that it uses the state of T to permit
us to rapidly �nd the nearly correct surface contact point, and
then re�ne it by iteration over a short distance. At the end of
the iteration a new normal, N , and new tangent plane, T are
computed at p1, readying us for the next tick. This process
of dropping a perpendicular from each new value of p0 to the
previous T and then using Algorithm 1 to �nd a new p1 on S
and new T continues so long as contact is maintained. If, after
computing a new T , we �nd the next p0 to be outside of it,
then contact with S is broken (S is no longer in the TOUCHED
state), no interaction force is imposed on the user, and we revert
to looking for the next incursion of p0 inside S. See Figure 3.

5. RENDERING A SURFACE S(p) = 0, FRICTION CASE.
A simple modi�cation of the above algorithm permits mod-

eling of surface friction on S. When we drop the perpendicular
from a new p0 to the last T to �nd p00 we are implicitly assum-
ing that there is no friction. When friction is present the value
of p00 will require modi�cation; depending on friction and force
directions, it may stick in place or may move to the edge of the
friction cone described below. Thus, we �rst construct the cone
shown in Figure 4 with it's apex at the new p0 and central axis

Figure 3: Finding subsequent surface contact point, p1, by
dropping perpendicular to last tangent plane to �nd p0

0
. p0

0

is then used to seed Algorithm 1 to �nd p1 on S.

Figure 4: E�ect of friction modi�cation causing surface con-
tact point to (a) stick or (b) slip.

normal to and passing through the last T at p00. This is known
as the friction cone. The angle � is function of the coe�cient of
friction � between the surface S and our surface contact point
(� = arctan(�)).

Then, if the old surface contact point p1;last is inside the
circle found by intersecting T with a friction cone, it sticks in
place and becomes the current p1, and Tlast becomes the current
T . However, if p1;last is outside this circle on the tangent plane,
we set p00 to be the point on the circle closest to p1;last (it slides
along T to the edge of the friction cone). From here we �nd
the actual point on S by using the modi�ed p00 as the seed for
Algorithm 1 and follow the gradient to S to �nd the new p1

and T at p1.
While this computation is an approximation to �nding the

actual point p1 on S, it avoids the complex computation of �nd-
ing the intersection of S with the friction cone. In practice the
algorithm is run at around 1 kHz and the errors are not palpably
apparent. It should also be noted that if S is itself a plane (such
as the cutting planes used in Section 6) then the iterative steps of
Algorithm 1 are unnecessary for both the frictionless and fric-
tion case, and we can directly set p1 = p00. Further it should be
noted that di�erent values of � are used depending on whether

Figure 5: Truncating an in�nite cone with cutting planes.

p1 is currently moving or stationary on S, corresponding to the
cases of dynamic or static friction, respectively.

6. TRUNCATING OBJECTS WITH CUTTING PLANES
In order to render more familiar objects common in 3D

graphics, such as cones and cylinders, it is necessary to trun-
cate, or cut away, parts of these objects. This could be done by
directly modifying the implicit equations by the Boolean opera-
tions described by Ricci (1973) or others, or by performing the
truncation in realtime using the techniques described below. For
example, the equation for a cone, x2 + y2 � z2 = 0, represents
the surface of in�nite extent shown in Figure 5(a). In order to
use this equation to represent the familiar cone so often used in
3D graphics, Figure 5(c), we must eliminate the surface above
the top plane and below the lower cutting plane intersecting the
cone in Figure 5(b). In addition, the exposed bottom circular
disk of the cone must be covered to prevent the interaction point
from passing into the cone.

This use of cutting planes is actually an intersection of the
cone object with two half-spaces de�ned by the two cutting
planes. The intersection or union of two volumes is considered
a standard Boolean operation, more commonly referred to as
constructive solid geometry or CSG. Although the proper set of
CSG operations on implicit surfaces is beyond the scope of this
paper, we discuss here the speci�c problem of intersecting half-
spaces with an object described by an implicit equation to allow
the creation of �nite cones and cylinders. Refer to Section 7 for
information on current work in this area.

Thus, we seek a method for taking the intersection of the
volume de�ned by Sobj(p) = 0 (such as a cone) and the half-
spaces de�ned by the cutting planes, Scp;i(p) = 0. Cutting
planes are represented in the same implicit form as other objects.
The i-th cutting plane is given simply as Scp;i(p) = (p�Xi)Ni,
where Xi is a an arbitrary point on the plane and Ni is the
outward pointing normal to the plane. We use the same inside-

Figure 6: Illustration of �rst contact through (a) one, and
(b) two surfaces.

outside function as in Property 1 of Section 3 to determine if p
is inside or outside the half-space de�ned by Scp;i(p).

For the present description we simplify the problem by re-
stricting cutting planes to be parallel or perpendicular to each
other. The reason for this simplifying assumption is twofold.
First, cutting planes were introduced to make familiar geomet-
ric shapes with implicit equations, such as cones and cylinders,
which only require parallel cutting planes. Second, concave in-
tersections of multiple cutting planes generate edges and corners
similar to faceted surfaces. Faceted surfaces, though addressed
by other rendering techniques developed by us and others, are
beyond the scope of the current presentation.

Formally, portions of surface Sobj occupying the volume out-
side the half-space de�ned by the cutting plane Scp;i are elim-
inated. Accordingly, the top cutting plane of Figure 5(b) has
the surface normal (0;�1; 0) and the lower cutting plane has the
surface normal (0; 1; 0). The following section details how we
modify the original rendering method to deal with the desired
intersection of object geometry Sobj , and cutting planes, Scpi.

Resulting Object In/Out Function
The volume resulting from the intersection of the volumes

de�ned by the cutting planes with the volume of Sobj has an in-
terior de�ned by the set of points p which simultaneously satisfy
the set of inequalities (Sobj(p) < 0; Scp;1(p) < 0; � � �Scp;N(p) <
0), given N cutting planes. Thus, the interaction point is interior
to the resulting surface when inside Sobj and inside all cutting
planes Scp;i. Otherwise, the interaction point is exterior to the
resultant volume.

Rendering with Cutting Planes
Initial contact is detected, as in the original method, when

the haptic interaction point p0 �rst passes from the exterior to
interior of the surface. When �rst entering the interior volume
from outside, the interaction point must pass through one, or
more than one, of the surfaces Sobj and Scp;i since the last tick.
When contact is established, one surface is determined to be
the TOUCHED surface and is used exactly as in the previous
method, to calculate and track p1. Contact is maintained or
relinquished as before with one additional caveat. Once contact
has been established it is now possible to move from one sur-
face to another without releasing contact. This occurs when the

line segment connecting p1;last to the current p1 intersects a sur-
face other than the TOUCHED surface. The subsections below
outline these steps in greater detail.

1st Contact: For the case when one surface is crossed by p0

as it passes into the resultant volume, that surface, Sobj or Scp;i,
becomes the active TOUCHED surface and is subsequently used
to calculate and track p1 as in the original rendering method.
See Figure 6(a).

When more than one surface, Sobj and/or Scp;i, is crossed
when p0 �rst passes into the resultant volume, as shown in Fig-
ure 6(b) one of the crossed surfaces must be determined to be
the TOUCHED surface and subsequently used to calculate and
track p1. To determine which surface becomes the TOUCHED
surface, it is necessary to �nd the last surface crossed on the line
from p0;last to the current p0. This is done by �nding the inter-
section point for each crossed surface, pintersection;i, with the line
from p0;last to the current p0. The surface associated with the
intersection point nearest p0 becomes the TOUCHED surface
and we proceed as in the original rendering method to �nd and
track p1 on the surface. Finding the intersection of this line with
a cutting plane Scp;i is done quite easily in closed form. Finding
the intersection point with Sobj is not easily done in closed form.
Instead, a binary search on the line from p0;last to the current
p0 is performed to locate the intersection to a speci�ed accuracy.
This is shown below:

insidePoint = P0
outsidePoint = p1;last

midPoint = (p1 + p1;last)=2
while (jS(midPoint)j > �) do

if (S(midPoint) < 0)
midPoint = (outsidePoint +midPoint)=2

else
midPoint = (midPoint + insidePoint)=2

intersectionPoint = midPoint.

Changing Contact from One Surface to Another: Once
contact has been established and one surface is determined to be
the TOUCHED surface, p1 is calculated just as in the original
rendering algorithm. After p1 is calculated, the line segment
connecting p1;last to the new p1 may cross a surface other than
the TOUCHED surface. If this occurs, the crossed surface in-
stantly becomes the current TOUCHED surface and p1 must be
recalculated. Unfortunately, p0 may be too far from the surface
of the new TOUCHED surface to use in Algorithm 1. Instead,
the just calculated p1 serves as an acceptable seed point to �nd
a �rst surface contact point using Algorithm 1.

7. APPLICATION TO THE GHOST(tm) TOOLKIT
The above algorithms have been used in the SensAble Tech-

nologies Inc. Ghost Software Toolkit (SensAble, 96) to render
shapes such as ellipses, toroids and cones. It has also been
used to render other more complex shapes such as the whi�e
cube shown in Figure 1. In addition, GHOST supports implicit
surfaces within a mixed environment of representational types
that currently includes implicit and polygonal representations.

Figure 7: Changing contact from one surface to another.

A more general technique for taking the union of objects is in-
trinsically supported and is handled in realtime. This enables
overlapping objects in the haptic environment to be automat-
ically combined. The algorithm is fast enough to support cal-
culating these unions even as shapes move dynamically in the
scene at rendering rates up to 1kHz. By the time of printing,
intersection and di�erence operations on all objects should be
supported under GHOST SDK as well. The API is also open to
allow developers to create their own primitives, such as custom
implicit surfaces.

8. CONCLUSIONS

Figure 8: Typical convergent solution for p1. With p0 held
stationary successive tangent planes (and therefor values of
p1) can be seen to rapidly converge to T1.

After running the algorithm with a number of surfaces under
di�erent conditions we were pleased to note that most surfaces
required less than than 20 microseconds per tick. For exam-
ple, performance tests found that the sphere equation took ap-
proximately 10microseconds to haptically render on a Pentium
166Mhz machine. In comparison, the wi�ecube took approx-
imately 15 microseconds on the same machine. These results
indicate that the algorithm is well suited for the 1-2kHz simula-
tion rates needed for haptics.

Most surface curvatures required only 1 or 2 iterations of the

Figure 9: Example showing limit cycle in p1 for highly
curved concave S. Despite stationary p0, the tangent planes
can be seen to oscillate between the bundles designated Ta
and Tb.

surface �nding algorithm to get su�ciently close. Only in high
curvature concavities did these numbers change. By negating an
ellipsoid equation we de�ned an interior volume of dimensions
40 � 40 � 0.4 millimeters to test stability at sharp concavities.
Though the surface �nding algorithm never iterated more than
10 times, another problem became apparent. Small concave fea-
tures with high curvature can cause a stable limit cycle in the
surface contact point solution such that for a �xed p0 we found
values of p1 to oscillate in the neighborhood of the correct so-
lution. Figure 8 shows an example of a converging case and
illustrates the rapid tracking nature of the algorithm; Figure 9
shows a case where the surface contact point oscillates in a stable
limit cycle.

Fortunately, this problem seems to be limited to concave
features with a small radius of curvature relative to the pene-
tration depth; it can be reduced or eliminated by one of several
adaptations to the algorithm.

Adaptation 1: Just before calculating p1 If S(p
0
0) < 0 then

let p00 = (p00 + p1;last)=2.

Adaptation 2: Replace calculation of p1 and tangent plane
T with the following:

maxDist = jjp00 � p1;lastjj
do

p1 = solution to Algorithm 1 using p00 as seed
T = plane with normal rŜ(p1), passing through p1

p2 = projection of interaction point onto T
CurDist = jjp2 � p1;lastjj
p00 = (p00 + p1;last)=2

while (curDist > maxDist)

Both of these adaptations tend to move p1 closer to p1;last

so that a better tangent plane will be found and p1 will even-
tually converge to the correct solution. These algorithms have
some shortcomings. The �rst adaptation e�ectively adds a small
viscous force to at surfaces. The second adaptation takes more
time to compute and causes some stickiness when moving along
a concave trough. Modi�cation to deal with �ne detail and ex-
tremes of curvature are currently being investigated.

9. ACKNOWLEDGMENTS
The authors would like to gratefully acknowledge SensAble

Technologies, Inc. for their support of the work reported herein.

10. REFERENCES
Avila, R.S. and L.M. Sobierajski, \A Haptic Interaction

Method for Volume Visualization," Visualization '96 Proceed-
ings, October, 1996.

Blinn A. H. 1982. \A generalization of algebraic surface
drawing." ACM Trans. on Graphics, 1 (July): 235-256.

Irfan A.E., S. Sclaro� and A.P. Pentland, \Physically-based
Modeling for Graphics and Vision," MIT Media Lab TR184,
1992. Also appears in Directions in Geometric Computing, R.
Martin (Editor), Information-Geometers, UK., 1993.

Mark, W. R., Randolph, S. C., Finch, M., Van Verth, J. M.,
& Taylor, R. M. I. \Adding Force Feedback to Graphics Systems:
Issues and Solutions." Computer Graphics Proceedings, Annual
Conference Series, 1996, ACM SIGGRAPH, pp. 447-452.

Massie, Thomas H. and K. Salisbury, \The PHANToMHap-
tic Interface: A Device for Probing Virtual Objects," Proceed-
ings of the ASME Winter Annual Meeting, Symposium on Hap-
tic Interfaces for Virtual Environment and Teleoperator Systems,
Chicago, IL, November 1994.

Morgenbesser H.B. and Srinivasan M.A., \Force shading for
haptic shape perception," Proc. ASME Winter Annual Meeting,
1996 (in press).

Ricci, A. 1973. \A constructive geometry for computer
graphics," The Computer Journal, v. 16, no. 2, 157-160.

Ruspini, D., Kolarov, K. and Khatib, O. \Robust Haptic
Display of Graphical Environments," in J.K. Salisbury and M.A.
Srinivasan, editors, Proc. of the First PHANToM Users Group
Workshop, M.I.T. Arti�cial Intelligence Laboratory Technical
Report AITR-1596, 1996.

Salisbury, Kenneth, D. Brock, T. Massie, N. Swarup and
C. Zilles, \Haptic Rendering: Programming Touch Interaction
with Virtual Objects," Proceedings of 1995 ACM Symposium on
Interactive 3D Graphics, Monterey, California, April 1995.

Salisbury, J.K and Srinivasan, M.A. (Eds), \Proceedings
of the First PHANToM Users Group Workshop," MIT AI Lab
Technical Report No. 1596 and RLE Technical Report No. 612,
Dec 1996.

Savchenko V.V., Pasko A.A., Okunev O.G., Kunii T.L. \Func-
tion representation of solids reconstructed from scattered surface
points and contours," Computer Graphics Forum, vol.14, No.4,
1995, pp.181-188.

SensAble Technologies, Inc. Ghost Toolkit preliminary prod-
uct literature, August 1996.

Storti, D. W., Ganter, M. A., and Nevrinceanu, C., \A tu-
torial on implicit solid modeling." The Mathematica Journal 2,
3 (1992), 70{78.

Thompson II, T.V., Johnson, D.E., and Cohen, E.C., \Di-
rect Haptic Rendering Of Sculptured Models," Proc. Sympo-
sium on Interactive 3D Graphics, (Providence, RI), pp. 167-176,
April 27-30, 1997.

Zilles, C, \Haptic Rendering with the Tool-Handle Haptic
Interface," S.M. Thesis, MIT Dept. of ME, May 1995.

Zilles, C. and K. Salisbury, \A Constraint-Based God Ob-
ject Method for Haptic Display," proceedings of IROS-95, Pitts-
burgh, Aug 6-9, 1995.

APPENDIX 1. DERIVIATION OF ALGORITHM 1
The purpose of Algorithm 1 is that, given a point p inside

or outside a volume de�ned by S, �nd the closest point p0 on
the surface. It accomplishes this by following the gradient of S
at successive points from the initial seed point until it reaches
the surface. The method derived below determines the step size
�p along this direction which should be taken.

We de�ne de�ne �p so that p0 = p + �p. Noting that
S(p0) = 0 because p0 is assumed on the surface S we can write

0 = S(p0) = S(p+ �p) � S(p) +rS(p) � �p:

Though �p is a vector of indeterminant direction in the
above equation, we will de�ne it to be in the direction of the
gradient of S at p and with an unknown magnitude d. Thus we
let �p = rŜ(p) d, where rŜ represents the normalized gradient
of S. Substituting this into the above equation gives:

0 = S(p) +rS(p) � rŜ(p) d

= S(p) + jjrS(p)jjd:

Solving for d yields d =
�S(p)

jjrS(p)jj
. Thus,

�p = �
S(p)rS(p)

rS(p) � rS(p)

.
�p is the increment that must be added to p0 to �nd the best

�rst-order approximation to p0. If S is a plane, this equation is
exact and �nds p0 in one step; for non-planar S we repeat the
procedure letting p = p0 and continue until the step size jj�pjj
is su�ciently small.

