CS/BioE/Biophys/BMI/CME 279
Computational biology: Structure and organization of biomolecules and cells

Image credit: Ansgar Philippsen

Sept 24, 2019
Ron Dror
20% of all science Nobel Prizes relate to 3D structure/organization of biomolecules

2017 Chemistry Nobel Prize: Cryoelectron microscopy

2013 Chemistry Nobel Prize: Computational models of biomolecules

AND THE WINNER OF THE NOBEL PRIZE IN SOFTWARE IS...

The Nobel Prize in Chemistry 2013

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".
Outline for lecture 1 (course overview)

• What is structure?
 – Structure (and dynamics) at multiple spatial scales
• Why is structure important?
• How computation helps: An overview of course topics
• Recurrent themes
• Course logistics
What is structure?
In daily life, we use machines with functional *structure* and *moving parts*.
Cells and biomolecules (e.g., proteins) are also machines whose function depends on structure and moving parts.
What is structure?

Structure (and dynamics) at multiple spatial scales
Protein structure

An adrenaline receptor
(the \(\beta_2 \) adrenergic receptor)
Example: how LSD binds to its target

Wacker et al., *Cell* 168:377, 2017
Collaboration with Bryan Roth (UNC)

“Revealed: Why LSD Lasts So Long!”
AVI LSD YouTube Channel

https://www.youtube.com/watch?v=LjumHvnl-ME&feature=youtu.be
Protein dynamics

β_2 adrenergic receptor
Proteins (and other molecules) often come together to form macromolecular complexes.

Nuclear Pore Complex
Alber et al., Nature 2007
These come together to form organelles

Synaptic vesicle
http://www.mpibpc.mpg.de/9547480/vesicle600.jpg
and cells

http://www.medfriendly.com/cell.html
Intracellular structure

Chih-Jung Hsu, Janis Burkhardt and Tobias Baumgart

http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted-Microscopes/N-STORM-Super-Resolution/(gallery); Zhuang group

David Goodsell
Intracellular dynamics (artist’s rendition)

Janet Iwasa and Tomas Kirchhausen
Why is structure important?
Genomics is a great start

- But a parts list is not enough to understand how a bicycle works

<table>
<thead>
<tr>
<th>REF. NO.</th>
<th>IBM NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>156011</td>
<td>Track Frame 21", 22", 23", 24", Team Red</td>
</tr>
<tr>
<td>2</td>
<td>157040</td>
<td>Fork for 21" Frame</td>
</tr>
<tr>
<td>2</td>
<td>157039</td>
<td>Fork for 22" Frame</td>
</tr>
<tr>
<td>2</td>
<td>157038</td>
<td>Fork for 23" Frame</td>
</tr>
<tr>
<td>2</td>
<td>157037</td>
<td>Fork for 24" Frame</td>
</tr>
<tr>
<td>3</td>
<td>191202</td>
<td>Handlebar TTT Competition Track Alloy 15/16"</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Handlebar Stem, TTT, Specify extension</td>
</tr>
<tr>
<td>5</td>
<td>191278</td>
<td>Expander Bolt</td>
</tr>
<tr>
<td>6</td>
<td>191272</td>
<td>Clamp Bolt</td>
</tr>
<tr>
<td>7</td>
<td>145841</td>
<td>Headset Complete 1 x 24 BSC</td>
</tr>
<tr>
<td>8</td>
<td>145842</td>
<td>Ball Bearings</td>
</tr>
<tr>
<td>9</td>
<td>190420</td>
<td>175 Raleigh Pistard Seta Tubular Prestavalve 27"</td>
</tr>
<tr>
<td>10</td>
<td>190233</td>
<td>Rim, 27" AVA Competition (36H) Alloy Prestavalve</td>
</tr>
<tr>
<td>11</td>
<td>145973</td>
<td>Hub, Large Flange Campagnolo Pista Track Alloy (pairs)</td>
</tr>
<tr>
<td>12</td>
<td>190014</td>
<td>Spokes, 11 5/8"</td>
</tr>
<tr>
<td>13</td>
<td>145837</td>
<td>Sleeve</td>
</tr>
<tr>
<td>14</td>
<td>145636</td>
<td>Ball Bearings</td>
</tr>
<tr>
<td>15</td>
<td>145170</td>
<td>Bottom Bracket Axle</td>
</tr>
<tr>
<td>16</td>
<td>145838</td>
<td>Cone for Sleeve</td>
</tr>
<tr>
<td>17</td>
<td>146473</td>
<td>L.H. Adjustable Cup</td>
</tr>
<tr>
<td>18</td>
<td>145833</td>
<td>Lockring</td>
</tr>
<tr>
<td>19</td>
<td>145239</td>
<td>Straps for Toe Clips</td>
</tr>
<tr>
<td>20</td>
<td>145834</td>
<td>Fixing Bolt</td>
</tr>
<tr>
<td>21</td>
<td>145835</td>
<td>Fixing Washer</td>
</tr>
<tr>
<td>22</td>
<td>145822</td>
<td>Dustcap</td>
</tr>
<tr>
<td>23</td>
<td>145823</td>
<td>R.H. and L.H. Crankset with Chainwheel</td>
</tr>
<tr>
<td>24</td>
<td>146472</td>
<td>Fixed Cup</td>
</tr>
<tr>
<td>25</td>
<td>145235</td>
<td>Toe Clips, Christophe, Chrome (Medium)</td>
</tr>
<tr>
<td>26</td>
<td>145684</td>
<td>Pedals, Extra Light, Pairs</td>
</tr>
<tr>
<td>27</td>
<td>123021</td>
<td>Chain</td>
</tr>
<tr>
<td>28</td>
<td>145980</td>
<td>Seat Post</td>
</tr>
<tr>
<td>29</td>
<td>167002</td>
<td>Seat Post Bolt and Nut</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Saddle, Brooks</td>
</tr>
<tr>
<td>31</td>
<td>145933</td>
<td>Track Sprocket, Specify 12, 13, 14, 15, or 16 T.</td>
</tr>
</tbody>
</table>
... but not the end

- We want the full spatiotemporal picture, and an ability to control it
- Broad applications, including drug design, medical diagnostics, chemical manufacturing, food production, and energy
Structure determines function

- Example: Motor protein (walks along microtubules, dragging load)
Structure determines function

- Example: Ribosome
 - Complex of many proteins and RNAs that together makes new proteins (by reading the genetic code and combining amino acids)

From *Inner Life of the Cell*, XVIVO and Biovisions @ Harvard

Hashem et al., Nature 494:385-9, 2013
Structure determines function

- Example: G protein–coupled receptors (GPCRs)
 - Largest class of human drug targets
 - Function: allow the cell to sense and respond to molecules outside it
Structure-based drug design

- Almost all drugs act by binding to proteins and altering their function
- Using knowledge of structures, we can design drugs that bind more tightly or more selectively, bind in different positions, alter behavior of protein in different ways, etc.
Designing new biomolecular machines

- Protein design (for health or industrial applications)
- Cell design?

http://zhanglab.ccmb.med.umich.edu/image/Protein_design.gif
How computation helps: An overview of course topics
Protein structure prediction

• Sequence of amino acids → 3D coordinates

• Two basic approaches:
 – Homology modeling (infer structure from similar protein of known structure)
 – Ab initio prediction (using physics-based models)
Molecular dynamics simulations

Beta-blocker binding to the β_2-adrenergic receptor

Dror et al., PNAS 2011
Molecular dynamics simulations

Folding of protein G
(Lindorff-Larsen et al., *Science*, 2011)

Structural change in a G protein
(Dror et al., *Science* 2015)
Protein design

- Given a desired protein structure (or, in some cases, function), design the amino acid sequence that produces it.

Ligand docking

Searching for potential drug molecules that bind to a target (usually a protein), and determine how they bind
Image analysis

Original image

Denoised image

Original image

Sharpened image
Fluorescence microscopy and cellular-level organization

Data: Bettina van Lengerich, Natalia Jura
Tracking and movie: Robin Jia

- Including super-resolution microscopy

How molecules move about a cell: diffusion and cellular-level simulation
Solving structures by x-ray crystallography

X-ray diffraction pattern
Image: http://www.chem.ucla.edu/harding/IGOC/X/x_ray_crystallography.html

→

Protein structure
Solving structures by single-particle electron microscopy (cryoelectron microscopy)

CryoEM image

Reconstructed envelope

Image from Wikipedia

http://people.cryst.bbk.ac.uk/~ubcg16z/chaperone.html
Deducing genomic structure (i.e., the structure of chromosomes)

Recurrent themes
Recurrent themes

- Similarities and differences in methods employed at different spatial scales
- **Physics-based approaches** (modeling based on first-principles physics) vs. **data-driven approaches** (inference/learning based on experimental data)
- Computation plays important role both in **structural interpretation of experimental data** and in **structural predictions in the absence** of such data
- **Energy functions** (which associate an energy or potential with each possible structure)
- Recurring math concepts: **Fourier transforms**, **convolution**, **Monte Carlo methods**
Course organization

Fine-scale \(\rightarrow\) Coarse-scale (roughly)

• Atomic-level modeling of proteins (and other macromolecules)
 – Biomolecular structure (including proteins)
 – Energy functions and their relationship to protein conformation
 – Molecular dynamics simulation
 – Protein structure prediction
 – Protein design
 – Ligand docking

• Coarser-level modeling and imaging-based methods
 – Fourier transforms and convolution
 – Image analysis
 – Microscopy
 – Diffusion and cellular-level simulation
 – X-ray crystallography
 – Single-particle electron microscopy
 – Genome structure

Focus will be on fundamentals, but most lectures will touch on current research topics
Course logistics
Course web page

- http://cs279.stanford.edu/

- Evaluation criteria and handouts on web page

- Link to website from last time course was offered, which includes all lecture slides
 - This year’s content will be similar but not identical

- Please sign up on Piazza (via link on webpage) so that you get announcements
Expected background

• Course is intended to be broadly accessible to students with either computational or biological backgrounds.

• Assignments involve basic programming in Python.
 – You need not have used Python before. You should have done some programming (in any language) before.
 – Python tutorial: time and location to be announced.

• You should have some previous exposure to biology, chemistry, and physics.

• You should have studied math through elementary calculus.
 – We will teach some additional relevant math concepts (e.g., Fourier transforms), with a focus on basic ideas/intuition rather than on equations.
Assignments, Project, Exam

• 3 assignments
 – First one is shorter than second and third.

• Project: More open-ended. A bit more work than second and third assignments.

• Final exam covering key concepts
Lectures and reading

- Lectures are not videotaped

- No textbook. Slides available, along with brief notes for some lectures and pointers to optional reading material

- Class participation encouraged!
Feedback welcome!

• I want to continue improving this course, and would appreciate your suggestions

• Please speak up when you don’t understand something
 – Or ask on Piazza
Course staff

• Prof. Ron Dror
 – Office hours: Tuesdays 4:20–5:10 (Shriram 104 and then Gates 204)

• Prof. Possu Huang
 – Office hours: TBD

• TAs:
 – Adrian Sanborn
 – Laura Miron
 – Meera Srinivasan
 – Daniel Tang
 – Yianni Laloudakis

 – Office hours and contact info at cs279.stanford.edu