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(diffusion)



How do molecules move around in a 
cell?
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From Inner Life of the Cell | Protein Packing, XVIVO and Biovisions @ Harvard  
 

• The interior of the cell is crowded, and all the molecules jiggle about. 
• Note that lots of molecules (e.g., water) aren’t even shown in this movie.  



Molecules jiggle about because other 
molecules keep bumping into them
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https://www.youtube.com/watch?v=1jYabtziQZo



Diffusion

• This “jiggling about” by lots of molecules leads to 
diffusion 

• Individual molecules follow a random walk, due 
to collisions with surrounding molecules 

• Diffusion = many random walks by many 
molecules 
– Substance goes from region of high concentration to 

region of lower concentration 
• We will focus on the basic case of random, 

unconfined, undirected motion. Certain 
molecules move around in more complicated 
ways within cells.  6(e.g. some molecules are confined within the nucleus of a 

cell, charged molecules in an electric field may tend toward a 
certain direction, etc.)



Diffusion as a random walk  
(particle-based perspective)
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Random walk
• We can model the motion of a molecule as a random walk 

– At each time step, randomly pick a direction, and move one unit 
in that direction 

– This type of motion (when caused by random collisions with 
other molecules) is called “Brownian motion”

8In the movie, only cardinal directions are chosen, but we could pick 
diagonal directions as well and still get Brownian motion



1, 2, or 3 dimensions

• In biological systems, a random walk can take 
place in: 
– 3 dimensions: a protein moving freely within the 

interior of a cell 
– 2 dimensions: a protein moving within a cell 

membrane 
– 1 dimension: a protein (e.g., transcription factor) 

moving along a strand of DNA
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Consider the 1D case (for simplicity)

• A particle starts at x0 = 0 
• At each time step, it has 50% probability of 

moving one unit forward, and 50% probability of 
moving one unit backward 

• Denote the sequence of positions as x0, x1, x2, x3, 
… 

• Question: if you repeat this process many times 
and make a histogram of the position x3, what will 
it look like?  How about and x10 or x100?
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• Probabilities: 
– P(x3 = –3) = 1/8 
– P(x3 = –1) = 3/8 
– P(x3 = 1) = 3/8 
– P(x3 = 3) = 1/8 

• Mean displacement:  
E[x3] = 0 

• Mean-squared displacement:  
E[x32] = 3
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Position after 3 time steps (x3)



• Mean displacement:  
E[x10] = 0 

• Mean-squared 
displacement:  
E[x102] = 10
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Position after 10 time steps (x10)



Properties of 1D Brownian motion

• After N steps: 
– Mean displacement: E[xN] = 0 
– Mean-squared displacement: E[xN2] = N 

• More generally, if the particle moves a distance L 
at each time step, E[xN2] = NL2  

• As N grows large, the distribution approaches a 
Gaussian (with mean 0 and variance NL2)
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Diffusion as a function of time

• Instead of thinking of position as a function of N, 
we might think of it as a function of time. 
– Let t denote total elapsed time and Δt denote length of 

each time step.  Then: 

– In other words, expected mean squared displacement 
grows linearly with time 15

N= t
Δt

E x(t)2⎡⎣ ⎤⎦ = E xN
2⎡⎣ ⎤⎦ = NL

2 = t
Δt
L2



Diffusion coefficient

• To quantify speed of diffusion, we define the 
diffusion coefficient D: 

• Then  
• In 2D, the diffusion coefficient is defined such that 

• In 3D,
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D = L2

2Δt
E x(t)2⎡⎣ ⎤⎦ = 2Dt

E r(t)2⎡⎣ ⎤⎦ = E x(t)2⎡⎣ ⎤⎦ + E y(t)2⎡⎣ ⎤⎦ = 4Dt

E r(t)2⎡⎣ ⎤⎦ = E x(t)2⎡⎣ ⎤⎦ + E y(t)2⎡⎣ ⎤⎦ + E z(t)2⎡⎣ ⎤⎦ = 6Dt

Note: L is average 
displacement per time 
step for each coordinate 
(x, y, or z)  

r(t) is displacement from initial position at time t  



Example values

• Diffusion coefficient (D): 
– Sugar: 500 (µm)2/s 
– Typical protein: 5 (µm)2/s 
– Note: Larger molecules generally diffuse more slowly 

than small ones 
• Cell size: 

– Bacterium (E. coli): 1 µm radius 
– Human neutrophil (white blood cell): 10 µm radius 
– A human neuron can be 100 µm wide and, in extreme 

cases, over 1 m in length

From Chris Burge 
(see links on course website)



Continuum view of diffusion
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Basic intuition

• Although we can’t predict the motion of one 
particle, we can predict the average motion of a 
large number of particles 
– Particles will move from regions of high concentration 

to regions of low concentration
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Fick’s law (or Fick’s 1st law)
• Suppose that particles are uniformly distributed in the y and z 

dimensions, and vary only in x 
• Let c represent concentration (a function of x) 
• Define the flux J as the rate at which particles diffuse across a 

boundary 
• Then Fick’s 1st law states that:
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J= −D ∂c
∂x

Illustration from 
Chris Burge

Note: Fick’s “laws” are approximations assuming frequent collisions between particles (https://doi.org/10.1002/aic.14926)



Fick’s law (or Fick’s 1st law)
• Suppose that particles are uniformly distributed in the y and z 

dimensions, and vary only in x 
• Let c represent concentration (a function of x) 
• Define the flux J as the rate at which particles diffuse across a 

boundary 
• Then Fick’s 1st law states that: J= −D ∂c

∂x
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Large negative 
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Note: Fick’s “laws” are approximations assuming frequent collisions between particles (https://doi.org/10.1002/aic.14926)



How does concentration change with 
time?

• Now think of concentration and flux as a function of position x and time t 
• The concentration at a particular position goes up with time if there is 

less flux away from that position than there is coming in to that position 
(in other words, if the flux at that position is decreasing as one moves in 
the positive x direction)
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∂c
∂t

= − ∂J
∂x

c
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Diffusion Equation (or Fick’s 2nd law)

• Combining these formulae gives us:
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∂c
∂t

= − ∂J
∂x

= − ∂
∂x

−D ∂c
∂x

⎛
⎝⎜

⎞
⎠⎟ = D

∂2c
∂x2

∂c
∂t

= D ∂2c
∂x2
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Example

• Diffusion from a point: 
– Solution to the diffusion equation is a Gaussian whose 

variance grows linearly with time
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bell curve grows wider over time



In three dimensions …

• Now suppose concentration varies as a function 
of x, y, z, and t 

• The diffusion equation generalizes to:
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∂c
∂t

= D∇2c = D ∂2c
∂x2

+ ∂2c
∂y2

+ ∂2c
∂z2

⎛
⎝⎜

⎞
⎠⎟

is called the Laplacian operator∇2



Simulating diffusion
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Reaction-diffusion simulation

• Reaction-diffusion simulation is a common way to 
model how molecules move within the cell  

• Basic rules: 
– Molecules move around by diffusion 
– When two molecules come close together, they have 

some probability of reacting to combine or modify one 
another 

• Two implementation strategies: 
– Particle-based 
– Continuum models
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(model individual molecules)

(model concentrations)



MCell: one of several particle-based 
simulation software packages

Other similar software packages: Smoldyn, Chemcell



How MCell works

• Particles representing molecules move according 
to a random walk, and react with one another 
probabilistically when they come into contact 
– MCell uses Monte Carlo algorithms 

• Morphology of cell membranes (and other 
cellular structures) represented by a mesh
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http://www.mcell.cnl.salk.edu/
Naomi Latorraca



MCell applications

• MCell has been widely used in neuroscience, to 
model phenomena such as synaptic transmission 

• A common approach is to perform simulations 
under various assumptions and see which ones 
best match experimental data 
– See, for example, Coggan et al., Evidence for Ectopic 

Neurotransmission at a Neuronal Synapse, Science 
309:446-451 (2005)
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Continuum approach
• Divide space into finite “voxels” 
• Instead of tracking positions of molecules, track 

concentrations of each type of molecule in each 
voxel 

• At each time step, update concentrations based 
on reactions of molecules within a voxel, and 
diffusion between neighboring voxels based on 
concentration differences (i.e., the diffusion 
equation)
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2D grid for illustrative purposes 
In a 3D grid, the individual boxes are “voxels”



Continuum approach

• Advantage: faster 
• Disadvantage: less accurate for small numbers of 

molecules 
• Unlike the particle-based approach, the 

continuum approach is deterministic 
• Example software: Simmune
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Example: Gray-Scott model

http://www.karlsims.com/rd.htmlYou’re not responsible for these details



Gray-Scott model

http://www.karlsims.com/rd.htmlYou’re not responsible for these details



Gray-Scott model

http://www.karlsims.com/rd.html

All sorts of interesting patterns emerge as one varies the parameters

Try it out at https://pmneila.github.io/jsexp/grayscott/



Alan Turing proposed a similar reaction-
diffusion model for pattern formation in animals

THE CHEMICAL BASIS OF MOKPHOGENESIS 

BY A. M. TURING, F.R.S. University qf Manchester 

(Received 9 November 195 1-Revised 15 March 1952) 

It  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo:~irall, unusual system. 
The investigation is chiefly concerned with the onset of instability. It  is faund that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It  is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

I n  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called 'the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. I n  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 

VOL.237. B. 641. (Price 8s.) 5 14August I 952[P~~btished 

Philosophical Transactions of the Royal Society of London



Gray-Scott model

▪ Demo:  
http://pmneila.github.io/jsexp/grayscott/ 


