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How do molecules move around In a
cell?



From Inner Life of the Cell | Protein Packing, XVIVO and Biovisions @ Harvard

e The interior of the cell is crowded, and all the molecules jiggle about.
* Note that lots of molecules (e.g., water) aren’t even shown in this movie.

4




Molecules jiggle about because other
molecules keep bumping into them

https://www.youtube.com/watch?v=1jYabtziQZo



Diffusion

This “jiggling about” by lots of molecules leads to
diffusion

Individual molecules follow a random walk, due
to collisions with surrounding molecules

Diffusion = many random walks by many

molecules

— Substance goes from region of high concentration to
region of lower concentration

We will focus on the basic case of random,

unconfined, undirected motion. Certain

molecules move around in more complicated

ways within cells.



Diffusion as a random walk
(particle-based perspective)



Random walk

« \We can model the motion of a molecule as a random walk

— At each time step, randomly pick a direction, and move one unit
in that direction

— This type of motion (when caused by random collisions with
other molecules) is called “Brownian motion”
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In the movie, only cardinal directions are chosen, but we could pick
diagonal directions as well and still get Brownian motion



1, 2, or 3 dimensions

* In biological systems, a random walk can take
place In:

— 3 dimensions: a protein moving freely within the
interior of a cell

— 2 dimensions: a protein moving within a cell
membrane

— 1 dimension: a protein (e.g., transcription factor)
moving along a strand of DNA



Consider the 1D case (for simplicity)

A particle starts at xo = 0

At each time step, it has 50% probability of
moving one unit forward, and 50% probability of
moving one unit backward

Denote the sequence of positions as xo, X1, X2, X3,

Question: if you repeat this process many times
and make a histogram of the position x3, what will
it look like? How about and Xx10 or X100?
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Position after 3 time steps (x3)
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Position after 3 time steps (x3)

* Probabilities:
— P(xs=-3)=1/8
— P(x3=-1)=3/8
— P(xs=1)=3/8
- P(x3=3)=1/8

 Mean displacement:
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 Mean-squared displacement:

E[xs2] = 3
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Position after 10 time steps (x10)
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Properties of 1D Brownian motion

« After N steps:
— Mean displacement: E[xn] = 0
— Mean-squared displacement: E[xn2] = N

* More generally, if the particle moves a distance L
at each time step, E[xn2] = NL?

* As N grows large, the distribution approaches a
Gaussian (with mean 0 and variance NL?2)
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Diffusion as a function of time

 |nstead of thinking of position as a function of N,
we might think of it as a function of time.

— Let t denote total elapsed time and At denote length of
each time step. Then:

N=—
Af

2 2 2 t 2
E|[x(t) |=E|x, |=NL :EL

— In other words, expected mean squared displacement
grows linearly with time
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Diffusion coefficient

To quantify speed of diffusion, we define the
diffusion coefficient D: D I’ Note: L is average

— displacement per time
2At step for each coordinate

Then E|x(t)’ |=2Dt by, orz)
In 2D, the diffusion coefficient is defined such that
E|r(t)’ |=E|x(t)’ |+E| y(t)’ |=4Dt

r(t) is displacement from initial position at time ¢

In 3D, E|r@) |=E|x(t) |+E[y() |+E|z(t) |=6Dt
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Example values

 Diffusion coefficient (D):
— Sugar: 500 (um)?/s
— Typical protein: 5 (um)?/s

— Note: Larger molecules generally diffuse more slowly
than small ones

« Cell size:
— Bacterium (E. coli): 1 uym radius
— Human neutrophil (white blood cell): 10 um radius

— A human neuron can be 100 um wide and, in extreme
cases, over 1 min length

From Chris Burge
(see links on course website)



Continuum view of diffusion
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Basic intuition

* Although we can't predict the motion of one

particle, we can predict the average motion of a
large number of particles

— Particles will move from regions of high concentration
to regions of low concentration
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Fick’s law (or Fick’'s 1st law)

« Suppose that particles are uniformly distributed in the y and z
dimensions, and vary only in x

 Let c represent concentration (a function of x)
* Define the flux J as the rate at which particles diffuse across a

boundary p
_ C
 Then Fick’s 1st law states that, J=—-—D —
ox
: .. .. e i : i ‘. o
) .‘: s ol el | *  lllustration from
— 1 IS .’ ey © { ‘. ) . p Chris Burge
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Note: Fick’s “laws” are approximations assuming frequent collisions between particles (https://doi.org/10.1002/aic.14926)



Fick’s law (or Fick’'s 1st law)

« Suppose that particles are uniformly distributed in the y and z
dimensions, and vary only in x

 Let c represent concentration (a function of x)
* Define the flux J as the rate at which particles diffuse across a

boundary p
. C
« Then Fick’s 1st law states that: J=—D —
0x
Large positive
(rightward) flux Large negative
/ (leftward) flux

N

Small positive
(rightward) flux

/

X

Note: Fick’s “laws” are approximations assuming frequent collisions between particles (https://doi.org/10.1002/aic.14926)



How does concentration change with
time?

* Now think of concentration and flux as a function of position x and time t

* The concentration at a particular position goes up with time if there is
less flux away from that position than there is coming in to that position
(in other words, if the flux at that position is decreasing as one moves in

the positive x direction)

% _ a_J Concentration
ot B ox decreasing with time
AN

Large positive
(rightward) flux
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with time
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(rightward) flux
/

/
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Diffusion Equation (or Fick’s 2nd law)

« Combining these formulae gives us:

/
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Example

 Diffusion from a point:

— Solution to the diffusion equation is a Gaussian whose
variance grows linearly with time
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In three dimensions ...

 Now suppose concentration varies as a function
of x,y,z,and t

* The diffusion equation generalizes to:

@
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V2 is called the Laplacian operator
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Simulating diffusion



Reaction-diffusion simulation

* Reaction-diffusion simulation is a common way to
model how molecules move within the cell

 Basic rules:

— Molecules move around by diffusion

— When two molecules come close together, they have
some probability of reacting to combine or modify one
another

* Two implementation strategies:

— Particle-based
— Continuum models
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MCell: one of several particle-based
simulation software packages

C D www.mcell.org/index.htm

HOMEPAGE PEOPLE RESEARCH TUTORIALS DOCUMENTATION PUBLICATIONS DOWNLOADS OUTREACH FORUMS

,,._; L -:-’-‘oa‘ag;

-

MONTE CARLC CELL

Other similar software packages: Smoldyn, Chemcell

®:




How MCell works

* Particles representing molecules move according
to a random walk, and react with one another
probabilistically when they come into contact

— MCell uses Monte Carlo algorithms

* Morphology of cell membranes (and other
cellular structures) represented by a mesh

"N e
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MCell applications

« MCell has been widely used in neuroscience, to
model phenomena such as synaptic transmission

« A common approach is to perform simulations
under various assumptions and see which ones
best match experimental data

— See, for example, Coggan et al., Evidence for Ectopic
Neurotransmission at a Neuronal Synapse, Science

309:446-451 (2005)
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Continuum approach

* Divide space into finite “voxels”

 |Instead of tracking positions of molecules, track
concentrations of each type of molecule in each
voxel

« At each time step, update concentrations based
on reactions of molecules within a voxel, and
diffusion between neighboring voxels based on
concentration differences (i.e., the diffusion
equation)

2D grid for illustrative purposes
In a 3D grid, the individual boxes are “voxels”
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Continuum approach

Advantage: faster

Disadvantage: less accurate for small numbers of
molecules

Unlike the particle-based approach, the
continuum approach is deterministic

Example software: Simmune
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Example: Gray-Scott model

Chemical A is added Chemical B is removed
at a given "feed" rate. at a given "kill" rate.
* Reaction: two Bs convert an A into B, *
as if B reproduces using A as food.

-~ ~
® ® — @

The system is approximated by using
two numbers at each grid cell for the
local concentrations of A and B.

Diffusion: both chemicals diffuse so uneven concentrations
spread out across the grid, but A diffuses faster than B.

You’re not responsible for these details hitp://www.karlsims.com/rd.html



Gray-Scott model

The grid is repeatedly updated using the following equations to update the concentrations
of A and B in each cell, and model the behaviors described above.

New
values

Previous
values

Diffusion: rates for Aand B
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These are 2D Laplacian functions, which give the
difference between the average of nearby grid
cells and this cell. This simulates diffusion because

A and B become more like their neighbors.

1 Feed: at rate f, scaled by

- (1-A) so Adoesn't exceed 1.0

“‘Delta t” is the change in time
for each iteration. All the
terms get scaled by this.

Kill: this term is subtracted to remove B
and scaled by B so it doesn't go below 0.
fis added to k here so the resulting kill
rate is never less than the feed rate.

Reaction: the chance that one A and two B will come
togetheris A x B x B. Ais converted to B so this
amount is subtracted from A and added to B.

You’re not responsible for these details

http://www.karlsims.com/rd.html




Gray-Scott model
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All sorts of interesting patterns emerge as one varies the parameters

¢ RS

Try it out at https://pmneila.github.io/jsexp/grayscott/

http://www.karlsims.com/rd.html


https://pmneila.github.io/jsexp/grayscott/

Alan Turing proposed a similar reaction-
diffusion model for pattern formation in animals

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Recetved 9 November 1951—Revised 15 March 1952)

Philosophical Transactions of the Royal Society of London
It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated ring of cells, a mathematically convenient, though biologically unusual system.




Gray-Scott model

= Demo:
http://pmneila.github.io/jsexp/grayscott/



http://pmneila.github.io/jsexp/grayscott/

