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Outline

« Atomic-level modeling of biological macromolecules
— Biomolecular structure (including protein structure)
— Energy functions and their relationship to molecular conformation
— Molecular dynamics simulation
— Predicting structures of proteins and other biomolecules
— Protein design
— Ligand docking and virtual screening

« Coarser-level modeling and imaging-based methods
— Fourier transforms and convolution
— Image analysis
— X-ray crystallography
— Cryo-electron microscopy
— Microscopy
— Diffusion and cellular-level simulation

* Recurring themes



Atomic-level modeling of
biological macromolecules



Biomolecular Structure



Water (and salt ions)

Cell membrane (lipids)

Protein
(adrenaline receptor)

* Proteins are constantly jiggling around, as are the molecules that surround them
(mostly water).

» Each protein—or other macromolecule—can in fact assume many structures, but
they tend to be similar to one another. Usually we talk about the “average” structure,
which is (roughly) what’s determined experimentally and deposited in the PDB.

* The surrounding molecules play a key role in determining protein structure.



Two-dimensional protein structure

* Proteins are chains of amino acids
 These amino acids are identical except for their

side chains
— Therefore proteins have regular (repeating) backbones
with differing side chains

— The different side chains have different chemical
properties, and they ultimately determine the 3D

structure of the protein.
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From https://www.bmglabtech.com/en/blog/protein-assays/



What determines the three-dimensional
structure of a protein or other biomolecule?

Basic interactions

— Bond length stretching

— Bond angle bending

— Torsional angle twisting

— Electrostatic interaction

— Van der Waals interaction (attractive and repulsive)

Complex interactions
— Hydrogen bonds
— Hydrophobic effect

— These “complex interactions,” which result from the basic
Interactions above, are particularly important to understanding
why biomolecules adopt particular 3D structures 7



Energy functions and their relationship
to molecular conformation



Potential energy functions

« A potential energy function U(x) specifies the total potential
energy of a system of atoms as a function of all their positions (x)

— For a system with n atoms, x is a vector of length 3n (x, y, and z
coordinates for every atom)

— In the general case, include not only atoms in the protein but also
surrounding atoms (e.g., water)

« The force on each atom can be computed by taking derivatives of
the potential energy function
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Example of a potential energy function:

molecular mechanics force field
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Above is the form of a typical molecular mechanics force field (as used in molecular
dynamics simulations, for example). The terms correspond to the “basic interactions”

discussed previously.




The Boltzmann Distribution

« The Boltzmann distribution relates the potential energy of a
particular arrangement of atoms (“conformation”) to the probability
of observing that arrangement of atoms (at equilibrium):

Equivalently,
-Ul(x _
p(x) o< exp( ( %RT) () = l exp < U(x) )

Z kgT
where T is temperature and kg is the Boltzmann constant

* Note: Zis chosen such that the probabilities sum to 1 across all
arrangements of atoms. It depends on U and T but not on x.
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Conformational states (macrostates)

» We typically care most about the probability that protein atoms
will be in some approximate arrangement, with any
arrangement of surrounding atoms

« We thus care about the probability of sets of atomic
arrangements, called conformational states

Energy, U(x)

— These correspond roughly to wells of the potential energy function
— To calculate probability of a well, we sum the probabilities of all the

specific atomic arrangements (conformations) it contains

Position (x)

>

Probability, p(x)

.....

Position (x)
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Free energies

The free energy Ga of a conformational state A
satisfies:
P(A)= eXp(_G%BT)

Clarifications:

— Free energies are clearly defined only for conformational
states/macrostates

— However, in protein structure prediction, protein design, and
ligand docking, it's often useful to define a “free energy
function” that approximates a free energy for some
neighborhood of each arrangement of protein atoms

« To predict protein structure, we minimize free energy, not
potential energy

— The term “energy function” is used for both potential energy ;
and free energy functions



Molecular dynamics simulation
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Molecular dynamics (MD) simulation

An MD simulation predicts how atoms move around based on
physical models of their interactions

Of the atomic-level modeling techniques we covered, this is

closest to the physics; it attempts to predict the real dynamics
of the system

It can thus be used to capture functionally important
processes, including structural changes in proteins, protein-
ligand binding, or protein folding
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Basic MD algorithm

Step through time (very short steps)

At each time step, calculate force acting on every
atom using a molecular mechanics force field

Then update atom positions and velocities using
Newton’s second law

dx

Ty

dt

dv  F(x)
dt m

Note: this is inherently an approximation, because we’re using classical
physics rather than quantum mechanics. (Quantum mechanical
calculations are used to determine force field parameters, however.) 1



Sampling

« Given enough time, an MD simulation will sample
the full Boltzmann distribution of the system

— This means that if one takes a snapshot from the
simulation after a long period of time, the probability of the
atoms being in a particular arrangement is given by the
Boltzmann distribution

* One can also sample the Boltzmann distribution in
other ways, including Monte Carlo sampling with the
Metropolis criterion

— Metropolis Monte Carlo: generate moves at random.
Accept any move that decreases the energy. Accept
moves that increase the energy by AU with probability

17



Predicting structures of proteins and
other biomolecules



Protein structure prediction

« The goal: given the amino acid sequence of a
protein, predict its average three-dimensional
structure

* |n theory, one could do this by MD simulation, but
that isn’t practical

* Practical methods for protein structure prediction
take advantage of existing data on protein
structures and sequences

19



Approaches to protein structure prediction
(i.e., what information can we leverage?)

« Template-based modeling (homology modeling)

— Useful when one can identify one or more likely
homologs of known structure (usually the case)

« Multiple sequence alignment (coevolution) methods

— Rely on sequences of many homologs without requiring
that their structures are known

* ADb Initio structure prediction

— Does not require identifying homologs of the query
sequence

— Even ab initio approaches usually take advantage of
available structural data, but in more subtle ways

20



Template-based structure prediction:
basic workflow

User provides a query sequence with unknown
structure

Search the PDB for proteins with similar
sequence and known structure. Pick the best
match (the template).

Build a model based on that template

— One can also build a model based on multiple
templates, where different templates are used for
different parts of the protein.

21



Principle underlying template-based modeling:
structure is more conserved than sequence

* Proteins with similar sequences tend to be
homologs, meaning that they evolved from a
common ancestor

* The fold of the protein (i.e., its overall structure)
tends to be conserved during evolution

* This tendency is very strong. Even proteins with
15% sequence identity usually have similar
structures.

— During evolution, sequence changes more quickly than
structure

22



Multiple sequence alignment (co-evolution)
methods

* Even if no structure of a related protein is
available, one can frequently still find many
sequences of related proteins

* One can use these sequences to infer
information about the relative positions of amino
acid residues in 3D

23



Amino acids in direct physical contact tend to
covary or “coevolve” across related proteins

: D
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W v contact in 3D
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coevolution
From: https://www.blopig.com/blog/2021/07/alphafold-2-

is-here-whats-behind-the-structure-prediction-miracle/

« Given many sequences of related proteins, amino acids that coevolve
are probably close together

» This approach again exploits the fact that structure is more conserved
than sequence during evolution



https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/
https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/

ADb Initio structure prediction
(as exemplified by Rosetta)

« Search for structure that minimizes an energy
function

— This energy function is knowledge-based (informed, in
particular, by statistics of the PDB), and it
approximates a free energy function

« Use a knowledge-based search strategy

— Rosetta uses a Monte Carlo search method involving
“fragment assembly,” in which it tries replacing
structures of small fragments of the protein being
modeled with fragments of protein structures from the

PDB
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Recent deep learning methods for protein
structure prediction leverage multiple sources

of information

» First-generation deep learning methods extracted more
information from multiple sequence alignments

* More recent deep learning methods (e.g., AlphaFold
2/3 and RoseTTAFold) do more:

Take both multiple sequence alignments and templates as
inputs (that is, sequences and structures of related proteins)

Learn favorability of local arrangements of amino acid
residues and their constituent atoms (i.e., side-chain packing)
from very large numbers of available protein structures

Learn how to combine these sources of information
effectively

Generalize to complexes of proteins and other biomolecules



Protein design



Overall goal

« Design a protein to serve a particular function or
purpose

— In particular, choose the appropriate amino acid
sequence



Typical protein design workflow

. Based on design goals (e.g., desired function),
choose structural requirements (e.g., some small ~ Mumanexpert

part of the protein must adopt a particular Judgement
structure, with the rest holding that part in place)

. Structure design: select a backbone structure Computation
that is compatible with structural requirements and (or Human
that is “designable” (i.e., “achievable” by actual fﬁge;nent)

proteins)

. Sequence design: select an amino acid sequence
that will adopt (fold into) the desired backbone
structure

Computation

. Perform wet-lab experiments to check which
designs work, and (optionally) to improve them



Structure design

« Goal: select a target structure for the protein
backbone

« This can be challenging, because only certain
backbone structures are achievable, and it's not
easy to tell which structures those are

 Traditional approaches include assembling
secondary structure elements by hand, modifying
the backbone structure of an existing protein, or
assembling fragments of existing protein
structure



Structure design

 Recent machine learning approaches such as
RFDiffusion make this process more systematic
and, often, more reliable

— Use experimentally determined backbone structures of
real proteins to learn a generative model that produces
backbone structures with desired characteristics
specified by the user

— Roughly analogous to using DALL-E to generate
iImages, but instead of providing a description in text,
one usually provides a quantitative description of
what’s desired (e.g., desired local structure, symmetry,
or binding to a particular molecule)



Sequence design

* Goal: given a desired approximate three-
dimensional backbone structure, find an amino
acid sequence that will fold to that structure

 |n principle, we could accomplish this by doing
structure prediction for every possible sequence,
but that's not practical
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Traditional approach to sequence
design, exemplified by Rosetta

 Focus on the desired backbone structure and
find the sequence that minimizes its energy
(relative to the unfolded state)

— Energy is generally estimated by a knowledge-based
free energy function
« Consider a discrete set of rotamers for each
amino acid side chain
— Minimize simultaneously over identities and rotamers
of amino acids
* The minimization problem is usually solved with
heuristic methods (e.g., Metropolis Monte Carlo) s



Recent machine learning—based approaches to
sequence design, exemplified by ProteinMPNN

* Train a machine learning method to predict amino
acid sequences of real proteins given their
experimentally backbone structures

— Or, better, given approximate backbone coordinates:
instead of using the exact experimentally determined
coordinates, add some noise (small random numbers)

* Methods like ProteinMPNN can generate many
candidate sequences for any given backbone
structure

— ProteinMPNN effectively learns to approximate the free
energy of a sequence when adopting a target backbone
structure, and then samples sequences that result in
low values of this (very approximate) free energy



Computational protein design is
heuristic but effective

Practical protein design methodologies involve
multiple simplifying assumptions

They're heuristic (that is, based on algorithms
that aren’t guaranteed to work but tend to work in
practice)

One generally produces many candidate designs
and tests them experimentally in the hope that at
least one will work

Despite these limitations, computational protein
design has proven effective and powerful for a
wide variety of applications N



Ligand docking and virtual screening



Ligand docking

« Goals:

— Given a ligand known to bind a particular protein,
determine its binding pose (i.e., location, orientation,
and internal conformation of the bound ligand)

— Determine how tightly a ligand binds a given protein

Protein Binding site Ligand

Complex

* Predicts...

* The pose of the molecule in
the binding site

* The binding affinity or a
score representing the
strength of binding

37
http://www.slideshare.net/baoilleach/proteinligand-docking-13581869



Binding affinity

* Binding affinity quantifies the binding strength of a
ligand to a protein (or other target)

« Conceptual definition: if we mix the protein and the
ligand (with no other ligands around), what fraction of
the time will the protein have a ligand bound?

 Affinity can be expressed as the concentration of
unbound ligand molecules at which half the protein
molecules will have a ligand bound, or as the
difference AG in free energy of the bound state and
the unbound state

38



Binding affinity

* In principle, we could estimate binding affinity by
measuring the fraction of time the ligand is bound
iIn an MD simulation, but this isn’t practical

0.00 us
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Standard ligand docking methodology

* Ligand docking has two key components, both
heuristic:

— A scoring function that very roughly approximates the
binding affinity of a ligand to a protein given a binding
pose

— A search method that searches for the best-scoring

binding pose for a given ligand (in a non-exhaustive
manner)

40



Virtual screening

« Goal: identify ligands that bind to a target—
particularly ligands that are very different from
any known binder

* Typical process

Select a virtual library of chemical compounds
Use docking to roughly estimate the affinity of each

Buy or make a chemically diverse subset of the compounds
with the best predicted affinities

Do experiments to test how well these compounds bind

Optional: optimization of experimentally validated binders by
testing related chemical compounds

41



Coarser-level modeling and
Imaging-based methods



Fourier transforms and convolution
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f(x)

Writing functions as sums of sinusoids

» Given a function defined on an interval of length L, we can write it as
a sum of sinusoids with the following frequencies/periods:

— Frequencies: 0, 1/L, 2/L, 3/L, ....
— Periods: constant term, L, L/2, L/3, ...

Original function

H O = N W
LN E i e —

f(x) = 1.9cos(2pi*0.01x-0.94)

N

Decreasing period

f(x)

-2t
-3t

f(x) = 0.27cos(2pi*0.02x-1.4)

H O = N W
T

Increasing frequency

Sum of sinusoids below

f(x) = 0.39cos(2pi*0.03x-2.8)

-40 =20 0 20 40

44



Writing functions as sums of sinusoids

« Each of these sinusoidal terms has a magnitude
(scale factor) and a phase (shift).

Original function

i 0 0 20 a0
Magnitude: -0.3
Phase: 0 (arbitrary)

f(x) = 1.9cos(2pi*0.01x-0.94)

2

Magnitude: 1.9
Phase: -.94

Sum of sinusoids below

f(x)

-3t

3 T T T —
2| ]
1t ]
ol ]
-1

2L ]

-40 =20 0 20
X

f(x) = 0.27cos(2pi*0.02x-1.4)

f(x)

Magnitude: 0.27
Phase: -1.4

40 20 0 20 40

f(x) = 0.39co0s(2pi*0.03x-2.8)

3
2
1k i
NN ]
1 a
2

40 20 0 20 40
X

Magnitude: 0.39
Phase: -2.8



The Fourier Transform: Expressing a function
as a set of sinusoidal term coefficients

« We can thus express the original function as a series of
magnitude and phase coefficients

— We can express each pair of magnitude and phase coefficients as a
complex number

« The Fourier transform maps the function to this set of complex
numbers, providing an alternative representation of the function.

« This also works for functions of 2 or 3 variables (e.g., images)

» Fourier transforms can be computed efficiently using the Fast
Fourier Transform (FFT) algorithm

Constant term  Sinusoid 1 Sinusoid 2 Sinusoid 3

(frequency 0)  (period L, frequency 1/L) (period L/2, frequency 2/L) (period L/3, frequency 3/L)
Magnitude: -0.3 Magnitude: 1.9 Magnitude: 0.27 Magnitude: 0.39

Phase: O (arbitrary) Phase: -.94 Phase: -1.4 Phase: -2.8
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Convolution

« Convolution is a weighted moving average

— To convolve one function with another, we compute a
weighted moving average of one function using the
other function to specify the weights

f g f convolved with g
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Convolution =
multiplication in frequency domain

* One can compute the convolution of two
functions by taking the Fourier transform of both
functions, multiplying the resulting coefficients at
each frequency, and then performing an inverse
Fourier transform

* Why is this important?

— It provides an efficient way to perform large
convolutions (thanks to the FFT)

— It allows us to interpret convolutions in terms of what
they do to different frequency components (e.g., high-
pass and low-pass filters) 48



Coarser-level modeling and
imaging-based methods

Image analysis
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Representations of an image

A

« We can think of a gray-scale image
as:

— Atwo-dimensional array of brightness vy  }
values

— A function of two variables (x and y), that
returns the brightness of the pixel at
position (x, y) X >

* A color image can be treated as
three separate images (red, green,
blue), or as a function that returns
three values (red, green, blue) for
each (x, y) pair




Reducing image noise

« We can reduce image noise using various filters (e.g.,
mean, median, Gaussian)
— These all rely on the fact that nearby pixels in an image tend to

be similar

« The mean and Gaussian filters (and many others) are
convolutions, and can thus be expressed as
multiplications in the frequency domain
— These denoising filters are low-pass filters. They reduce

magnitudes of high-frequency coefficients while preserving
low-frequency coefficients

— These filters work because real images have mostly low-
frequency content, while noise tends to have a lot of high-
frequency content

51



High-pass filters

* A high-pass filter reduces magnitudes of low-
frequency coefficients while preserving high-
frequency components

* We can sharpen images by adding a high-pass
filtered version of the image to the original image

* High-pass filtering can also be used to remove
undesired background brightness that varies
smoothly across the image

52



Principal component analysis (PCA)

« Basic idea: given a set of points in a multi-dimensional

space, we wish to find the linear subs
that best fits those points.

pace (line, plane, etc.)

First pfinci

pal component

% Second principal component

« PCA provides a way to represent high-di
(such as images) approximately in just a

* It is thus useful in summarization and classification of images

mensional data sets
few dimensions
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X-ray crystallography



The basic idea

* Get the molecule whose structure you want to
determine to form a crystal

« Shine an intense beam of x-rays through the crystal,
giving rise to a “diffraction pattern” (a pattern of spots
of varying brightnesses)

— Shine x-rays through the crystal at multiple angles to
capture the full 3D diffraction pattern

* From that pattern, infer the 3D structure of the
molecule

http://lacasadeloscristales.trianatech.com/wp-
content/uploads/2014/09/image005-300x300.jpg
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How does the diffraction pattern relate
to the molecular structure?

* The diffraction pattern is the Fourier transform of
the electron density!

— But only the magnitude of each Fourier coefficient is
measured, not the phase

— The lack of phase information makes solving the
structure (i.e., going from the diffraction pattern to a set
of 3D atomic coordinates) challenging

Contour map of
electron density

56

http://www.lynceantech.com/images/
f& clectron_density_map.png



Solving for molecular structure

« Step 1: Initial phasing
— Come up with an approximate solution for the structure

(and thus an approximate set of phases), often using a
predicted structure as a model

« Step 2: Phase refinement

— Search for perturbations that improve the fit to the
experimental data (the diffraction pattern)

— Restrain the search to “realistic” molecular structures,
usually using a molecular mechanics force field
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Cryo-electron microscopy
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The basic idea

We want the structure of a “particle”. a molecule (e.g., a protein) or a well-defined
complex composed of many molecules (e.g., a ribosome)

We spread identical particles out on a film, and image them using an electron
microscope

The images are two-dimensional (2D), each representing a projection of the 3D shape
(atomic density) of a particle. Each particle is positioned at a different, unknown angle.

Given enough 2D images of particles, we can computationally reconstruct the 3D
shape of a particle

Pd bbb bbb vy bbby b by 4y Electronbeam

Particles

Images
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Image from Joachim Frank
http://biomachina.org/courses/structures/091.pdf



Determining the 3D structure: key steps

« 2D image analysis: Go from raw image
data to 2D projections that are somewhat [t
cleaner, but still noisy \ m”
3D reconstruction: Then use these high- &q&,wﬁq
resolution projections to build a 3D model ;4&‘;@;
— Reconstruction with known view angles is 70
fairly straightforward. Standard algorithm is LN e
filtered back-projection. i e
. ] . Reconstructed 3D
— Structure refinement with unknown view density map
angles (the problem at hand) is harder. |
lterate between improving estimates of view  iossriors)
angles given a 3D model and building a
better 3D model given those view angles.
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Coarser-level modeling and
imaging-based methods

Microscopy



Fluorescence microscopy: basic idea

« Suppose we want to know where a particular
type of protein is located in the cell, or how these
proteins move around

 We can'’t do this by simply looking through a
microscope, because:
— We (usually) don’t have sufficient resolution
— The protein of interest doesn’t look different from those
around it
« Solution: Make the molecules of interest glow by
attaching fluorophores (fluorescent molecules)

— When you shine light of a particular wavelength on a
fluorophore, it emits light of a different wavelength 02



Single-molecule tracking

* If the density of fluorescent molecules is sufficiently
low, we can track individual molecules

Data: Bettina van Lengerich, Natalia Jura 63
Tracking and movie: Robin Jia




The diffraction limit

* The image observed under a microscope is
always slightly blurred due to fundamental
limitations on how well a lens can focus light
— The observed image is a low-pass filtered version of

the ideal image

* This leads to a limit on resolution known as the
diffraction limit
— The achievable resolution scales with wavelength of

the radiation used (i.e., a shorter wavelength leads to a
smaller minimum distance between resolvable points)

— X-rays have shorter wavelength than visible light.
Electrons have much shorter wavelengths. ”



Diffusion and cellular-level simulation
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How do molecules move within a cell?

From Inner Life of the Cell | Protein Packing, https://www.youtube.com/watch?v=1jYabtziQZo
XVIVO and Biovisions @ Harvard

* Molecules jiggle about because other molecules keep
bumping into them

* |Individual molecules thus follow a random walk

 Diffusion = many random walks by many molecules

— Substance goes from region of high concentration to region of
lower concentration

— Aggregate behavior is deterministic !



Particle-based perspective

* |n the basic case of random, unconfined,

undirected motion:

— Individual molecules follow a random walk, leading to
Brownian motion

— Mean squared displacement is proportional to time

— The proportionality constant is specified by the
diffusion constant
« Faster-moving molecules have larger diffusion constants
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Continuum view of diffusion

* |If enough molecules are involved, we can predict
their aggregate behavior
* The rate at which the concentration of a molecule
changes with time is given by the diffusion
equation
— This rate is determined by the second derivative of
concentration with respect to each spatial coordinate

%—D azc+azc+azc
o  \ox? 9y* 97

D is the diffusion constant
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Reaction-diffusion simulation

A common method to model cellular processes is
reaction-diffusion simulation

» Basic rules:
— Molecules move around by diffusion

— When two molecules come close together, they have
some probability of reacting to combine or modify one
another

* Two implementation strategies:

— Particle-based models (each particle
represents one molecule or complex)

— Continuum models
(based on the diffusion equation)
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Recurring Themes
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Physics-based vs. data-driven
approaches

Physics-based approaches: modeling based on first-
principles physics
Data-driven approaches: inference/learning based on
experimental data

Examples:
— Physics-based vs. knowledge-based energy functions

— Molecular dynamics vs. knowledge-based protein structure
prediction

Most methods fall somewhere on the continuum between
these two extremes
— Examples: ligand docking or solving x-ray crystal structures

— Machine learning is playing an ever-greater role in this field, but
the best machine learning methods usually incorporate some
physics-based information



Energy functions

Energy functions (approximate representations of
either potential energy or free energy) play a key
role in many of the techniques we’'ve covered,

including:

— Molecular dynamics

— Protein structure prediction
— Protein design

— Ligand docking

— X-ray crystallography
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Computation is required not only for prediction

of structure and dynamics but also for

structural interpretation of experimental data

Computational prediction

— Biomolecular structure prediction
— Protein design

— Molecular dynamics simulation

— Ligand docking

— Reaction-diffusion simulations

Structural interpretation of experimental data
— X-ray crystallography
— Cryo-electron microscopy

— Image analysis for fluorescence microscopy data ’
(including super-resolution imaging)



Recurring math concepts

* Fourier transforms and convolution play
Important roles in:
— Image analysis
— X-ray crystallography
— Cryo-electron microscopy

— Some methods for docking and molecular dynamics
simulation

* Another recurring math concept: Monte Carlo
methods for sampling a probability distribution
and for optimization
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Similarities and differences in methods
employed at different spatial scales

« Atomic-level modeling of single proteins vs.
coarser-level modeling of cells

« Experimental methods: x-ray crystallography vs.
single-particle electron microscopy

« Simulation methods: molecular dynamics vs.
reaction-diffusion simulations
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Although I've mostly focused on proteins as

examples, the concepts and methods we've

covered apply to other biomolecules as well
(RNA, DNA, carbohydrates, small molecules, etc.)
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How did people do these things before
they had powerful computers?



Large-scale simulation in 1971

» Excerpt from “Protein synthesis: an epic on the cellular level”
* Performed at Stanford!

https://www.youtube.com/watch?v=u9dhO0iCLww
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Course evaluations

* Please fill them out, as this helps me continue to
Improve the course!
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