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Outline

• Atomic-level modeling of biological macromolecules 
– Biomolecular structure (including protein structure) 
– Energy functions and their relationship to molecular conformation 
– Molecular dynamics simulation 
– Predicting structures of proteins and other biomolecules 
– Protein design 
– Ligand docking and virtual screening 

• Coarser-level modeling and imaging-based methods 
– Fourier transforms and convolution 
– Image analysis 
– X-ray crystallography 
– Cryo-electron microscopy  
– Microscopy 
– Diffusion and cellular-level simulation 

• Recurring themes 2



Atomic-level modeling of  
biological macromolecules
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Biomolecular Structure
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Water (and salt ions)

Protein  
(adrenaline receptor)

Cell membrane (lipids)

• Proteins are constantly jiggling around, as are the molecules that surround them 
(mostly water). 

• Each protein—or other macromolecule—can in fact assume many structures, but 
they tend to be similar to one another. Usually we talk about the “average” structure, 
which is (roughly) what’s determined experimentally and deposited in the PDB. 

• The surrounding molecules play a key role in determining protein structure.



Two-dimensional protein structure

• Proteins are chains of amino acids 
• These amino acids are identical except for their 

side chains 
– Therefore proteins have regular (repeating) backbones 

with differing side chains 
– The different side chains have different chemical 

properties, and they ultimately determine the 3D 
structure of the protein. 
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From https://www.bmglabtech.com/en/blog/protein-assays/



What determines the three-dimensional 
structure of a protein or other biomolecule?

• Basic interactions 
– Bond length stretching 
– Bond angle bending 
– Torsional angle twisting 
– Electrostatic interaction 
– Van der Waals interaction (attractive and repulsive) 

• Complex interactions 
– Hydrogen bonds 
– Hydrophobic effect 
– These “complex interactions,” which result from the basic 

interactions above, are particularly important to understanding 
why biomolecules adopt particular 3D structures 7



Energy functions and their relationship 
to molecular conformation
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Potential energy functions

• A potential energy function U(x) specifies the total potential 
energy of a system of atoms as a function of all their positions (x)  
– For a system with n atoms, x is a vector of length 3n (x, y, and z 

coordinates for every atom) 
– In the general case, include not only atoms in the protein but also 

surrounding atoms (e.g., water) 
• The force on each atom can be computed by taking derivatives of 

the potential energy function
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Example of a potential energy function:  
molecular mechanics force field 

( )
angles

2
0kθ θ θ+ −∑

i j

i j i ij

q q
r>

+∑∑

 12 6
ij ij

i j i ij ij

A B
r r>

+ −∑∑

Bond lengths (“Stretch”)

Bond angles (“Bend”)

Torsional/dihedral angles

Electrostatic

Van der Waals

U = kb b− b0( )2
bonds
∑

+ kφ ,n 1+ cos nφ −φn( )⎡⎣ ⎤⎦
n
∑

torsions
∑

Above is the form of a typical molecular mechanics force field (as used in molecular 
dynamics simulations, for example).  The terms correspond to the “basic interactions” 
discussed previously.



The Boltzmann Distribution
• The Boltzmann distribution relates the potential energy of a 

particular arrangement of atoms (“conformation”) to the probability 
of observing that arrangement of atoms (at equilibrium): 
 
 
 
 
where T is temperature and kB is the Boltzmann constant 

• Note: Z is chosen such that the probabilities sum to 1 across all 
arrangements of atoms. It depends on U and T but not on x.
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Conformational states (macrostates)
• We typically care most about the probability that protein atoms 

will be in some approximate arrangement, with any 
arrangement of surrounding atoms 

• We thus care about the probability of sets of atomic 
arrangements, called conformational states 
– These correspond roughly to wells of the potential energy function 
– To calculate probability of a well, we sum the probabilities of all the 

specific atomic arrangements (conformations) it contains 
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Free energies
• The free energy GA of a conformational state A 

satisfies: 

• Clarifications: 
– Free energies are clearly defined only for conformational 

states/macrostates   
– However, in protein structure prediction, protein design, and 

ligand docking, it’s often useful to define a “free energy 
function” that approximates a free energy for some 
neighborhood of each arrangement of protein atoms 
• To predict protein structure, we minimize free energy, not 

potential energy 
– The term “energy function” is used for both potential energy 

and free energy functions
13

P(A) = exp −GA
kBT( )



Molecular dynamics simulation
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Molecular dynamics (MD) simulation
• An MD simulation predicts how atoms move around based on 

physical models of their interactions 
• Of the atomic-level modeling techniques we covered, this is 

closest to the physics; it attempts to predict the real dynamics 
of the system 

• It can thus be used to capture functionally important 
processes, including structural changes in proteins, protein-
ligand binding, or protein folding

15



Basic MD algorithm

• Step through time (very short steps) 
• At each time step, calculate force acting on every 

atom using a molecular mechanics force field 
• Then update atom positions and velocities using 

Newton’s second law
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Note: this is inherently an approximation, because we’re using classical 
physics rather than quantum mechanics.  (Quantum mechanical 
calculations are used to determine force field parameters, however.) 



Sampling

• Given enough time, an MD simulation will sample 
the full Boltzmann distribution of the system 
– This means that if one takes a snapshot from the 

simulation after a long period of time, the probability of the 
atoms being in a particular arrangement is given by the 
Boltzmann distribution 

• One can also sample the Boltzmann distribution in 
other ways, including Monte Carlo sampling with the 
Metropolis criterion 
– Metropolis Monte Carlo: generate moves at random.  

Accept any move that decreases the energy.  Accept 
moves that increase the energy by ∆U with probability 

17e
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Predicting structures of proteins and 
other biomolecules
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Protein structure prediction

• The goal: given the amino acid sequence of a 
protein, predict its average three-dimensional 
structure 

• In theory, one could do this by MD simulation, but 
that isn’t practical 

• Practical methods for protein structure prediction 
take advantage of existing data on protein  
structures and sequences

19



Approaches to protein structure prediction 
(i.e., what information can we leverage?)

• Template-based modeling (homology modeling) 
– Useful when one can identify one or more likely 

homologs of known structure (usually the case) 
• Multiple sequence alignment (coevolution) methods 

– Rely on sequences of many homologs without requiring 
that their structures are known  

• Ab initio structure prediction 
– Does not require identifying homologs of the query 

sequence 
– Even ab initio approaches usually take advantage of 

available structural data, but in more subtle ways
20



Template-based structure prediction:  
basic workflow 

• User provides a query sequence with unknown 
structure 

• Search the PDB for proteins with similar 
sequence and known structure.  Pick the best 
match (the template). 

• Build a model based on that template 
– One can also build a model based on multiple 

templates, where different templates are used for 
different parts of the protein.
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Principle underlying template-based modeling: 
structure is more conserved than sequence 

• Proteins with similar sequences tend to be 
homologs, meaning that they evolved from a 
common ancestor 

• The fold of the protein (i.e., its overall structure) 
tends to be conserved during evolution 

• This tendency is very strong.  Even proteins with 
15% sequence identity usually have similar 
structures. 
– During evolution, sequence changes more quickly than 

structure

22



Multiple sequence alignment (co-evolution) 
methods

• Even if no structure of a related protein is 
available, one can frequently still find many 
sequences of related proteins 

• One can use these sequences to infer 
information about the relative positions of amino 
acid residues in 3D
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Amino acids in direct physical contact tend to 
covary or “coevolve” across related proteins

From: https://www.blopig.com/blog/2021/07/alphafold-2-
is-here-whats-behind-the-structure-prediction-miracle/

• Given many sequences of related proteins, amino acids that coevolve 
are probably close together  

• This approach again exploits the fact that structure is more conserved 
than sequence during evolution

https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/
https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/


Ab initio structure prediction  
(as exemplified by Rosetta)

• Search for structure that minimizes an energy 
function 
– This energy function is knowledge-based (informed, in 

particular, by statistics of the PDB), and it 
approximates a free energy function 

• Use a knowledge-based search strategy 
– Rosetta uses a Monte Carlo search method involving 

“fragment assembly,” in which it tries replacing 
structures of small fragments of the protein being 
modeled with fragments of protein structures from the 
PDB
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Recent deep learning methods for protein 
structure prediction leverage multiple sources 

of information
• First-generation deep learning methods extracted more 

information from multiple sequence alignments 
• More recent deep learning methods (e.g., AlphaFold 

2/3 and RoseTTAFold) do more: 
– Take both multiple sequence alignments and templates as 

inputs (that is, sequences and structures of related proteins) 
– Learn favorability of local arrangements of amino acid 

residues and their constituent atoms (i.e., side-chain packing) 
from very large numbers of available protein structures  

– Learn how to combine these sources of information 
effectively  

– Generalize to complexes of proteins and other biomolecules



Protein design
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Overall goal

• Design a protein to serve a particular function or 
purpose 
– In particular, choose the appropriate amino acid 

sequence



Typical protein design workflow
1. Based on design goals (e.g., desired function), 

choose structural requirements (e.g., some small 
part of the protein must adopt a particular 
structure, with the rest holding that part in place) 

2. Structure design: select a backbone structure 
that is compatible with structural requirements and 
that is “designable” (i.e., “achievable” by actual 
proteins) 

3. Sequence design: select an amino acid sequence 
that will adopt (fold into) the desired backbone 
structure 

4. Perform wet-lab experiments to check which 
designs work, and (optionally) to improve them

Computation 
(or Human 
expert 
judgement)

Computation

Wet-lab 
experiments

Human expert 
judgement



Structure design
• Goal: select a target structure for the protein 

backbone 
• This can be challenging, because only certain 

backbone structures are achievable, and it’s not 
easy to tell which structures those are   

• Traditional approaches include assembling 
secondary structure elements by hand, modifying 
the backbone structure of an existing protein, or 
assembling fragments of existing protein 
structure



Structure design
• Recent machine learning approaches such as 

RFDiffusion make this process more systematic 
and, often, more reliable 
– Use experimentally determined backbone structures of 

real proteins to learn a generative model that produces 
backbone structures with desired characteristics 
specified by the user 

– Roughly analogous to using DALL-E to generate 
images, but instead of providing a description in text, 
one usually provides a quantitative description of 
what’s desired (e.g., desired local structure, symmetry, 
or binding to a particular molecule) 



Sequence design

• Goal: given a desired approximate three-
dimensional backbone structure, find an amino 
acid sequence that will fold to that structure 

• In principle, we could accomplish this by doing 
structure prediction for every possible sequence, 
but that’s not practical

32



Traditional approach to sequence 
design, exemplified by Rosetta

• Focus on the desired backbone structure and 
find the sequence that minimizes its energy 
(relative to the unfolded state) 
– Energy is generally estimated by a knowledge-based 

free energy function 
• Consider a discrete set of rotamers for each 

amino acid side chain 
– Minimize simultaneously over identities and rotamers 

of amino acids 
• The minimization problem is usually solved with 

heuristic methods (e.g., Metropolis Monte Carlo) 33



Recent machine learning–based approaches to 
sequence design, exemplified by ProteinMPNN

• Train a machine learning method to predict amino 
acid sequences of real proteins given their 
experimentally backbone structures 
– Or, better, given approximate backbone coordinates: 

instead of using the exact experimentally determined 
coordinates, add some noise (small random numbers) 

• Methods like ProteinMPNN can generate many 
candidate sequences for any given backbone 
structure 
– ProteinMPNN effectively learns to approximate the free 

energy of a sequence when adopting a target backbone 
structure, and then samples sequences that result in 
low values of this (very approximate) free energy 



Computational protein design is 
heuristic but effective

• Practical protein design methodologies involve 
multiple simplifying assumptions 

• They’re heuristic (that is, based on algorithms 
that aren’t guaranteed to work but tend to work in 
practice) 

• One generally produces many candidate designs 
and tests them experimentally in the hope that at 
least one will work 

• Despite these limitations, computational protein 
design has proven effective and powerful for a 
wide variety of applications 35



Ligand docking and virtual screening
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Ligand docking
• Goals: 

– Given a ligand known to bind a particular protein, 
determine its binding pose (i.e., location, orientation, 
and internal conformation of the bound ligand) 

– Determine how tightly a ligand binds a given protein

37

http://www.slideshare.net/baoilleach/proteinligand-docking-13581869



Binding affinity

• Binding affinity quantifies the binding strength of a 
ligand to a protein (or other target) 

• Conceptual definition: if we mix the protein and the 
ligand (with no other ligands around), what fraction of 
the time will the protein have a ligand bound? 

• Affinity can be expressed as the concentration of 
unbound ligand molecules at which half the protein 
molecules will have a ligand bound, or as the 
difference ΔG in free energy of the bound state and 
the unbound state

38



• In principle, we could estimate binding affinity by 
measuring the fraction of time the ligand is bound 
in an MD simulation, but this isn’t practical

39

Binding affinity



Standard ligand docking methodology

• Ligand docking has two key components, both 
heuristic: 
– A scoring function that very roughly approximates the 

binding affinity of a ligand to a protein given a binding 
pose 

– A search method that searches for the best-scoring 
binding pose for a given ligand (in a non-exhaustive 
manner)

40



Virtual screening

• Goal: identify ligands that bind to a target—
particularly ligands that are very different from 
any known binder 

• Typical process 
– Select a virtual library of chemical compounds  
– Use docking to roughly estimate the affinity of each  
– Buy or make a chemically diverse subset of the compounds 

with the best predicted affinities  
– Do experiments to test how well these compounds bind 
– Optional: optimization of experimentally validated binders by 

testing related chemical compounds

41



Coarser-level modeling and  
imaging-based methods

42



Fourier transforms and convolution
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Writing functions as sums of sinusoids
• Given a function defined on an interval of length L, we can write it as 

a sum of sinusoids with the following frequencies/periods: 
– Frequencies: 0, 1/L, 2/L, 3/L, ….  
– Periods: constant term, L, L/2, L/3, …

44

Original function Sum of sinusoids below

+ + +

Decreasing period 
Increasing frequency



+ +

Magnitude: 0.39

+

• Each of these sinusoidal terms has a magnitude 
(scale factor) and a phase (shift).

Original function Sum of sinusoids below

Magnitude: 1.9
Phase: -.94

Magnitude: 0.27
Phase: -1.4 Phase: -2.8

Writing functions as sums of sinusoids

Magnitude: -0.3
Phase: 0 (arbitrary)



• We can thus express the original function as a series of 
magnitude and phase coefficients  
– We can express each pair of magnitude and phase coefficients as a 

complex number 
• The Fourier transform maps the function to this set of complex 

numbers, providing an alternative representation of the function. 
• This also works for functions of 2 or 3 variables (e.g., images)  
• Fourier transforms can be computed efficiently using the Fast 

Fourier Transform (FFT) algorithm

46

The Fourier Transform: Expressing a function 
as a set of sinusoidal term coefficients

Magnitude: 0.39Magnitude: 1.9
Phase: -.94

Magnitude: 0.27
Phase: -1.4 Phase: -2.8

Magnitude: -0.3

Sinusoid 1  
(period L, frequency 1/L)

Constant term  
(frequency 0)

Sinusoid 2  
(period L/2, frequency 2/L)

Sinusoid 3  
(period L/3, frequency 3/L)

Phase: 0 (arbitrary)



Convolution

• Convolution is a weighted moving average 
– To convolve one function with another, we compute a 

weighted moving average of one function using the 
other function to specify the weights
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f g f convolved with g 



Convolution =  
multiplication in frequency domain

• One can compute the convolution of two 
functions by taking the Fourier transform of both 
functions, multiplying the resulting coefficients at 
each frequency, and then performing an inverse 
Fourier transform 

• Why is this important? 
– It provides an efficient way to perform large 

convolutions (thanks to the FFT) 
– It allows us to interpret convolutions in terms of what 

they do to different frequency components (e.g., high-
pass and low-pass filters) 48



Image analysis
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Representations of an image
• We can think of a gray-scale image 

as: 
– A two-dimensional array of brightness 

values 
– A function of two variables (x and y), that 

returns the brightness of the pixel at 
position (x, y) 

• A color image can be treated as 
three separate images (red, green, 
blue), or as a function that returns 
three values (red, green, blue) for 
each (x, y) pair
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Reducing image noise

• We can reduce image noise using various filters (e.g., 
mean, median, Gaussian) 
– These all rely on the fact that nearby pixels in an image tend to 

be similar  
• The mean and Gaussian filters (and many others) are 

convolutions, and can thus be expressed as 
multiplications in the frequency domain 
– These denoising filters are low-pass filters. They reduce 

magnitudes of high-frequency coefficients while preserving 
low-frequency coefficients 

– These filters work because real images have mostly low-
frequency content, while noise tends to have a lot of high-
frequency content
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High-pass filters

• A high-pass filter reduces magnitudes of low-
frequency coefficients while preserving high-
frequency components  

• We can sharpen images by adding a high-pass 
filtered version of the image to the original image 

• High-pass filtering can also be used to remove 
undesired background brightness that varies 
smoothly across the image
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Principal component analysis (PCA)
• Basic idea: given a set of points in a multi-dimensional 

space, we wish to find the linear subspace (line, plane, etc.) 
that best fits those points. 
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• PCA provides a way to represent high-dimensional data sets 
(such as images) approximately in just a few dimensions 

• It is thus useful in summarization and classification of images

First principal component

Second principal component



X-ray crystallography
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The basic idea

• Get the molecule whose structure you want to 
determine to form a crystal 

• Shine an intense beam of x-rays through the crystal, 
giving rise to a “diffraction pattern” (a pattern of spots 
of varying brightnesses) 
– Shine x-rays through the crystal at multiple angles to 

capture the full 3D diffraction pattern 
• From that pattern, infer the 3D structure of the 

molecule
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http://lacasadeloscristales.trianatech.com/wp-
content/uploads/2014/09/image005-300x300.jpg



How does the diffraction pattern relate 
to the molecular structure?

• The diffraction pattern is the Fourier transform of 
the electron density! 
– But only the magnitude of each Fourier coefficient is 

measured, not the phase 
– The lack of phase information makes solving the 

structure (i.e., going from the diffraction pattern to a set 
of 3D atomic coordinates) challenging 

56
http://www.lynceantech.com/images/
electron_density_map.png

Contour map of 
electron density



Solving for molecular structure 

• Step 1: Initial phasing 
– Come up with an approximate solution for the structure 

(and thus an approximate set of phases), often using a 
predicted structure as a model 

• Step 2: Phase refinement 
– Search for perturbations that improve the fit to the 

experimental data (the diffraction pattern) 
– Restrain the search to “realistic” molecular structures, 

usually using a molecular mechanics force field
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Cryo-electron microscopy
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The basic idea
• We want the structure of a “particle”: a molecule (e.g., a protein) or a well-defined 

complex composed of many molecules (e.g., a ribosome) 
• We spread identical particles out on a film, and image them using an electron 

microscope 
• The images are two-dimensional (2D), each representing a projection of the 3D shape 

(atomic density) of a particle.  Each particle is positioned at a different, unknown angle. 
• Given enough 2D images of particles, we can computationally reconstruct the 3D 

shape of a particle

59

Image from Joachim Frank 
http://biomachina.org/courses/structures/091.pdf

Electron beam

Particles

Images



Determining the 3D structure: key steps

• 2D image analysis: Go from raw image 
data to 2D projections that are somewhat 
cleaner, but still noisy 

• 3D reconstruction: Then use these high-
resolution projections to build a 3D model 
– Reconstruction with known view angles is 

fairly straightforward.  Standard algorithm is 
filtered back-projection. 

– Structure refinement with unknown view 
angles (the problem at hand) is harder.  
Iterate between improving estimates of view 
angles given a 3D model and building a 
better 3D model given those view angles.

60

Reconstructed 3D 
density map

Li et al., Nature Methods 
10:584 (2013)



Microscopy
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Fluorescence microscopy: basic idea

• Suppose we want to know where a particular 
type of protein is located in the cell, or how these 
proteins move around 

• We can’t do this by simply looking through a 
microscope, because: 
– We (usually) don’t have sufficient resolution 
– The protein of interest doesn’t look different from those 

around it 
• Solution: Make the molecules of interest glow by 

attaching fluorophores (fluorescent molecules) 
– When you shine light of a particular wavelength on a 

fluorophore, it emits light of a different wavelength 62



Single-molecule tracking
• If the density of fluorescent molecules is sufficiently 

low, we can track individual molecules  

Data: Bettina van Lengerich, Natalia Jura 
Tracking and movie: Robin Jia 
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The diffraction limit

• The image observed under a microscope is 
always slightly blurred due to fundamental 
limitations on how well a lens can focus light 
– The observed image is a low-pass filtered version of 

the ideal image 
• This leads to a limit on resolution known as the 

diffraction limit 
– The achievable resolution scales with wavelength of 

the radiation used (i.e., a shorter wavelength leads to a 
smaller minimum distance between resolvable points) 

– X-rays have shorter wavelength than visible light.  
Electrons have much shorter wavelengths. 64



Diffusion and cellular-level simulation
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How do molecules move within a cell?

• Molecules jiggle about because other molecules keep 
bumping into them 

• Individual molecules thus follow a random walk 
• Diffusion = many random walks by many molecules 

– Substance goes from region of high concentration to region of 
lower concentration  

– Aggregate behavior is deterministic
66

From Inner Life of the Cell | Protein Packing, 
XVIVO and Biovisions @ Harvard  
 

https://www.youtube.com/watch?v=1jYabtziQZo



Particle-based perspective

• In the basic case of random, unconfined, 
undirected motion: 
– Individual molecules follow a random walk, leading to 

Brownian motion 
– Mean squared displacement is proportional to time 
– The proportionality constant is specified by the 

diffusion constant 
• Faster-moving molecules have larger diffusion constants
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Continuum view of diffusion

• If enough molecules are involved, we can predict 
their aggregate behavior 

• The rate at which the concentration of a molecule 
changes with time is given by the diffusion 
equation   
– This rate is determined by the second derivative of 

concentration with respect to each spatial coordinate
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D is the diffusion constant



Reaction-diffusion simulation

• A common method to model cellular processes is 
reaction-diffusion simulation 

• Basic rules: 
– Molecules move around by diffusion 
– When two molecules come close together, they have 

some probability of reacting to combine or modify one 
another 

• Two implementation strategies: 
– Particle-based models (each particle 

represents one molecule or complex) 
– Continuum models  

(based on the diffusion equation)
69



Recurring Themes
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Physics-based vs. data-driven 
approaches

• Physics-based approaches: modeling based on first-
principles physics 

• Data-driven approaches: inference/learning based on 
experimental data 

• Examples: 
– Physics-based vs. knowledge-based energy functions 
– Molecular dynamics vs. knowledge-based protein structure 

prediction 
• Most methods fall somewhere on the continuum between 

these two extremes 
– Examples: ligand docking or solving x-ray crystal structures 
– Machine learning is playing an ever-greater role in this field, but 

the best machine learning methods usually incorporate some 
physics-based information



Energy functions

• Energy functions (approximate representations of 
either potential energy or free energy) play a key 
role in many of the techniques we’ve covered, 
including: 
– Molecular dynamics 
– Protein structure prediction 
– Protein design 
– Ligand docking 
– X-ray crystallography
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Computation is required not only for prediction 
of structure and dynamics but also for 

structural interpretation of experimental data

• Computational prediction 
– Biomolecular structure prediction 
– Protein design 
– Molecular dynamics simulation 
– Ligand docking 
– Reaction-diffusion simulations  

• Structural interpretation of experimental data 
– X-ray crystallography 
– Cryo-electron microscopy 
– Image analysis for fluorescence microscopy data 

(including super-resolution imaging)
73



Recurring math concepts

• Fourier transforms and convolution play 
important roles in: 
– Image analysis 
– X-ray crystallography 
– Cryo-electron microscopy 
– Some methods for docking and molecular dynamics 

simulation 
• Another recurring math concept: Monte Carlo 

methods for sampling a probability distribution 
and for optimization
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Similarities and differences in methods 
employed at different spatial scales

• Atomic-level modeling of single proteins vs. 
coarser-level modeling of cells 

• Experimental methods: x-ray crystallography vs. 
single-particle electron microscopy 

• Simulation methods: molecular dynamics vs. 
reaction-diffusion simulations
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Although I’ve mostly focused on proteins as 
examples, the concepts and methods we’ve 
covered apply to other biomolecules as well 

(RNA, DNA, carbohydrates, small molecules, etc.)

76



How did people do these things before 
they had powerful computers?
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Large-scale simulation in 1971
• Excerpt from “Protein synthesis: an epic on the cellular level” 
• Performed at Stanford!
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https://www.youtube.com/watch?v=u9dhO0iCLww



Course evaluations

• Please fill them out, as this helps me continue to 
improve the course!
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