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Final reminder: Please provide
feedback to help us improve the course

 If you haven't already filled out the feedback
survey, please do so immediately after class. It
will close at 5 pm today.

* Anonymous survey:
https://forms.gle/rR6XBxelLp7Sy3m5k8




Watch these two recorded lectures
before Thursday

e Fourier transforms and convolution

https://stanford-pilot.hosted.panopto.com/Panopto/Pages/
Viewer.aspx?id=2f4f335a-76ac-401d-8577-b2140171fbfa

e Image analysis

https://stanford-pilot.hosted.panopto.com/Panopto/Pages/
Viewer.aspx?id=9d9db1a4-b246-45af-8d54-b2140171fbec




Assignment 2

* Due Thursday Oct. 31 (1 pm)

* Those who wish to submit a solution to the
challenge question may do so until Tuesday Nov.
5 (1 pm) but still need to submit the rest of the
assignment by Thursday Oct. 31 (1 pm).
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What is protein design, and why do it?



Overall goal

« Design a protein to serve a particular function or
purpose

— In particular, choose the appropriate amino acid
sequence



Sample applications

Designing enzymes (proteins that catalyze chemical
reactions)
— Useful for production of industrial chemicals and drugs

— Potential environmental applications: degrading toxins or producing
biofuels

Designing proteins that bind specifically to other proteins
— Potential for HIV, cancer, Alzheimer’s treatment

— Special case: antibody design

Designing sensors (proteins that bind to and detect the

presence of small molecules—e.g., by lighting up or changing
color)

— Calcium sensors used to detect neuronal activity in imaging studies
— Proteins that detect TNT or other explosives, for mine detection

Making a more stable variant of an existing protein (to
facilitate experimental investigation)



Classical problem definition

Given the desired three-dimensional structure of a protein,
design an amino acid sequence that will assume that
structure.

— Of course, a precise set of atomic coordinates would determine the
sequence. Usually we start with an approximate desired structure.

— The problem of designing an amino acid sequence that will adopt a
desired backbone structure is also known as “sequence design.”
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http://www.riken.jp/zhangiru/images/sequence_protein.jpg

Note: the term “protein design” is sometimes used to describe several different
(though related) problems



How do we choose the desired
structure?

« Until recently, this was typically done with various
ad hoc methods

« Lately, it's become more systematic, and is now
sometimes called “structure design.”
— | will use that term here.

Note: the term “protein design” is sometimes used to describe several different
(though related) problems



Typical protein design workflow

. Based on design goals (e.g., desired function),
choose structural requirements (e.g., some
small part of the protein must adopt a particular
structure, with the rest holding that part in place)

Human expert
judgement

. Structure design: select a backbone structure (CO”;p“tatiO”
that is compatible with structural requirements e‘)’(;eftma”

and that is “designable” (i.e., “achievable” by judgement)
real proteins)

. Sequence design: select an amino acid that will computation
adopt (fold into) the desired backbone structure

. Perform wet-lab experiments to check which
designs work, and (optionally) to improve them



Sequence design

Given the desired folded structure (specified by backbone coordinates), come up with a
sequence that folds into that structure
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The “direct” approach
(doesn’t work in practice!)

« Given a target structure, search over all possible
protein sequences

* For each protein sequence, predict its structure,
and compare to the target structure

« Choose the best match
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Why doesn’t the “direct” approach work?

« Computationally intractable

— Huge number of sequences to consider
« 20N possible sequences with N residues

« May not be good enough!

— Protein structure prediction remains imperfect,
especially for proteins substantially different from
naturally occurring ones

— We want to maximize the probability of the desired
structure (compared to all other possible folded and
unfolded structures)

« We could do this by sampling the full Boltzmann

distribution for each candidate sequence ... but that’s very
difficult for even one sequence! 13



Traditional approach:
Energy minimization



Simplify this problem by making a few
assumptions

1. Assume the backbone geometry is fixed

2. Assume each amino acid can only take on a
finite number of geometries (rotamers)

3. Assume that what we want to do is to maximize
the energy drop from the completely unfolded
state to the target geometry

— In other words, simply ignore all the other possible
folded structures that we want to avoid
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The simplified problem

At each position on the backbone, choose a rotamer (an amino
acid type and a side-chain geometry) to minimize overall energy

— Assume our energy function specifies a free energy. The Rosetta all-
atom force field is a common choice.

— For each amino acid sequence, energy is measured relative to the
unfolded state.

— Assume that energy can be expressed as a sum of terms that depend
on one or two rotamers each. This is the case for the Rosetta force
fields (and for most molecular mechanics force fields as well).

« Thus, we wish to minimize total energy Er, where

Ly = 2|:Ei(r})+2Eij(r;’rj):|

i#]

Note that r; specifies both the amino acid residue at position i

and that residue’s side-chain geometry .



Optimization methods

* Heuristic optimization methods are used in the great

majority of protein design today

— Not guaranteed to find optimal solution, but faster than
exact methods

— Most common is Metropolis Monte Carlo

« Moves may be as simple as randomly choosing a position,
then randomly choosing a new rotamer at that position

« May decrease temperature over time (simulated annealing)



Optional: “Flexible backbone” design

One of our key simplifying assumptions was that
of a fixed backbone geometry.

For many applications, protein design works better
If you give the backbone some limited “wiggle
room.”

This requires optimizing simultaneously over
rotamers and backbone geometry.

— Often addressed through a Monte Carlo search
procedure that alternates between local tweaks to
backbone dihedrals and changes to side-chain rotamers

— One can also refine a designed structure by local
energy minimization, then re-optimize the side chains



Optional: Negative design

* Another simplifying assumption was that we simply
minimize the energy of the desired structure
— We do not consider all other possible structures. It's possible
that their energy ends up even lower.

 In negative design, we identify a few structures that we want to
avoid, and we try to keep their energies high during the design
process.

— This can help, but we cannot explicitly avoid all possible
Incorrect structures without making the problem much more
complicated. So the overall approach is still heuristic.

* One can also perform structure prediction for designed
sequences as a way to filter out ones that fold to an
undesired structure
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Newer approach:
Machine learning



Lots of recent work on machine learning
for protein sequence design

Protein sequence design with a learned potential

Namrata Anand® !, Raphael Eguchi® 2, Irimpan |. Mathews3, Carla P. Perez® 4, Alexander Derry® >,

Russ B. Altman"® & Po-Ssu Huang® 1™ Nature Communications, 2022

Generative models for graph-based protein design

NeurlPS, 2019

John Ingraham, Vikas K. Garg, Regina Barzilay, Tommi Jaakkola

Robust deep learning-based protein sequence design
. . , And
using ProteinMPNN Science, 2022 many

J. Dauparas'?, |. Anishchenko?, N. Bennett?>, H. Bai*>4, R. J. Ragotte'?, L. F. Milles™?, B. I. M. Wicky', morel
A. Courbet'??, R. J. de Haas®, N. Bethel*%4, P. J. Y. Leung"?3, T. F. Huddy'?, S. Pellock™?, D. Tischer*2,
F. Chan'?, B. Koepnick?, H. Nguyen'?, A. Kang'?, B. Sankaran®, A. K. Bera"%, N. P. King'%, D. Baker->4*

| will focus on the last of these (ProteinMPNN), as it’s the first to be used
widely for actual protein design



ProteinMPNN

» Basic idea: train a machine learning method to
predict sequences of real proteins given their
backbone structures

— Importantly, add noise to the backbone coordinates in
training
* ProteinMPNN goes through the sequence positions
In a random order, predicting amino acid identities
based on (1) backbone geometry and (2) amino
acid identities already predicted at other positions

— It can be run may times, generating a different sequence
each time. Each of these is a candidate design.
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Protel N M P N N Optional material

« MPNN = message-passing neural network
(operates on graphs)

* ProteinMPNN uses a graph to represent the
backbone structure

— That is, distances between atoms in the backbone

A chainaA Chain B :
o o / ProteinMPNN \
/ Backbone Encoder \ / Sequence Decoder\

23

Dauparas et al., Science 2023



Structure design

What do we want our target structure backbone coordinates to be?
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Designing the backbone

* The first step of protein design is generally to
select one or more target backbone structures.

 Traditionally, this has been as much art as
science

— Apparently proteins can only adopt a limited set of
backbone structures, but there wasn’t a great
description of what that set is.

* Traditional methods to design backbone structure:
— Use an experimentally determined backbone structure

— Use a fragment assembly program like Rosetta,
selecting fragment combinations that fit some
approximate desired structure

— Assemble secondary structure elements by hand

25



Example of traditional backbone design

— To design “Top7,” a protein with a novel fold, Kuhlman et al.
started with a schematic, then used Rosetta fragment
assembly to find 172 backbone models that fit it.

Fig. 1. A two-dimensional schematic of the target fold (hexagon, strand; square, helix; circle, other).
Hydrogen bond partners are shown as purple arrows. The amino acids shown are those in the final
designed (Top7) sequence.

Initial schematic of target fold. Hexagons = 8 sheet.
Squares = a helix. Arrows = hydrogen bonds. Letters Final structure
indicate amino acids in final designed sequence

(these were not determined until much later).

26

Kuhlman et al., Science 302:1364-8 (2003)



Could one use machine learning for
backbone design?

* A challenging problem

— This isn’t simple prediction. Instead, it requires
generating backbones that satisfy criteria for a given
design and that will be adopted by one or more actual
amino amino acid sequences

* Aflurry of recent papers on this problem. | will

focus on one particularly promising recent
method.

Article Watson ... Baker, Nature, 2023

De novo design of protein structure and
function with RFdiffusion

27




Structure design by RFdiffusion

* RFdiffusion (RoseTTAFold Diffusion) is based on the same

machine learning approach as image generators like DALL-E:
“denoising diffusion”

— Oiriginated in Surya Ganguli’s lab, Stanford Applied Physics Dept.

W.D. Heaven, “This
avocado armchair could be
the future of Al”,
Technology Review, 2021




RFDiffusion

« Gradually convert protein backbone structures to random patterns by
adding noise (i.e., random numbers) to the position and orientation of
each amino acid

* Add this noise to the backbone atom coordinates a little bit at a time,
over ~200 steps

* Train a machine learning method that, given the noisy (“messed up”)
backbone coordinates at one step, predicts the coordinates at the
previous step (which are slightly less noisy)

— This learned process is called the “denoising,” “

Diffusion model

reverse,” or “generative” process

Forward (noising) process
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RFDiffusion

Key insight: one can make this denoising process work
much better by using a structure predictor as a

component
— RFDiffusion uses RoseTTAFold as a starting point, and tunes it
for this application
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« Recycling (three times) ]

AlphaFold 2 and recent versions of RoseTTAFold use “recycling,” meaning that they
run the prediction process several times, feeding the output coordinates as inputs
to the next prediction. This inspired the use of RoseTTAFold in RFdifussion.



RFDiffusion

* |In making its predictions, X CNCNONCNCNONC N

Unconditional

the denoising (generative)
process can use
Information on properties

of the protein to be |
generated. This
approach, known as o
“conditioning,” allows one =
to generate designs with
desired properties. £
— For example, desired local

structure (functional

motifs), symmetry, or o

binding target

Watson et al., Nature, 2023



Complementary experimental methods



Computational protein design is often combined
with experimental protein engineering methods

* For example, computational designs can often be
Improved by directed evolution

— Directed evolution involves introducing random mutations to
proteins and picking out the best ones

— Usually this is done in living cells, with the fittest cells (i.e.,
those containing the “best” version of the protein) selected by

some measure
* This is particularly powerful when designing proteins for
a desired function that can be easily measured in cells

Frances Arnold

2018 Nobel Prize “for
the directed evolution
of enzymes”




Large language models for protein design



Optional material

Large language models for protein
design

* Protein large language models (e.g., the ESM models
mentioned in the structure prediction lecture) have
proven very useful for certain protein design tasks

— These tasks include “optimizing” designed proteins to
increase binding affinities or enzymatic activity

— Nice example: Shanker ... Hie, Kim, “Unsupervised
evolution of protein and antibody complexes with a
structure-informed language model”, Science 2024

« Some recent papers make much more general claims
about structure and function design with language
models alone. Some of these claims remain to be
tested rigorously.



Examples of successful designs
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Designing proteins that bind specific
ligands

The example below required specification of the
position of certain side chains that will form
favorable interactions with the ligand

Shape complementarity

‘ ‘.“ ) i 7 ; ‘—’ Binding site pre~organ|zat»on

Define ligand binding interactions Place ligand and interacting residues Select pre-organized sites with
in scaffolds and design binding site sequence high shape complementarity

Protein designed to bind tightly to a specific steroid, but not to related molecules

Tinberg et al., Nature 501:212-6 (2013)



Designing enzymes

* |In the example below, the protein holds two molecules in
just the right relative positions for them to react. This
SpeedS up the reaction. react more easily than when freely moving around

.

Molecule 1

Molecule 2

38
Siegel et al., Science 329:309-13 (2010)



Design of a transporter

* De novo design of a protein that transports zinc ions (Zn2*), but
not calcium ions (Ca2*), across a cell membrane—a process that
requires the protein to alternate between at least two

conformations 39
tran§porter molecules are often extremely selective of Joh et al., Science 346:1520-24 (2014)
one ion over others



Designing multi-protein structures

How pocl Idluts Ight aid What happenedt Ma
cancer treatment

Divine et al., Designed
proteins assemble antibodies
into modular nanocages.
Science 372:eabd9994 (2021)

“This week we report the
design of new proteins that
cluster antibodies into dense
particles, rendering them more
effective.”




How well does protein design work?



How well does protein design work?

» Very impressive recent successes!

 However, one should keep in mind that:
— Successful protein design projects often involve making and experimentally

testing tens of candidate proteins (or more) to find a good one

— Projects and design strategies that fail generally aren’t published
— Protein design is not yet a matter of simply “turning the crank,” although

machine learning methods like ProteinMPNN and RFDiffusion help
automate it

 Evaluating/quantifying/comparing the effectiveness of protein
design methodologies is difficult

Checking if a design “works” requires wet-lab experiments

To compare methodologies, one would need to synthesize and test many
designed sequences for each methodology

One would need to do this for many protein design problems

Different protein design projects may have very different goals, so there
isn’'t a universal metric for how “good” a given sequence is



