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Final reminder: Please provide 
feedback to help us improve the course

• If you haven’t already filled out the feedback 
survey, please do so immediately after class. It 
will close at 5 pm today. 

• Anonymous survey:  
https://forms.gle/rR6XBxeLp7Sy3m5k8
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Watch these two recorded lectures 
before Thursday

• Fourier transforms and convolution 
https://stanford-pilot.hosted.panopto.com/Panopto/Pages/
Viewer.aspx?id=2f4f335a-76ac-401d-8577-b2140171fbfa 

• Image analysis 
https://stanford-pilot.hosted.panopto.com/Panopto/Pages/
Viewer.aspx?id=9d9db1a4-b246-45af-8d54-b2140171fbec 
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Assignment 2

• Due Thursday Oct. 31 (1 pm) 

• Those who wish to submit a solution to the 
challenge question may do so until Tuesday Nov. 
5 (1 pm) but still need to submit the rest of the 
assignment by Thursday Oct. 31 (1 pm).
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Outline

• What is protein design, and why do it? 
• Sequence design 

– Traditional approach: energy minimization 
– Newer approach: machine learning 

• Structure design 
• Complementary experimental methods 
• Large language models for protein design 
• Examples of successful designs 
• How well does protein design work?

5



What is protein design, and why do it?
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Overall goal

• Design a protein to serve a particular function or 
purpose 
– In particular, choose the appropriate amino acid 

sequence



Sample applications
• Designing enzymes (proteins that catalyze chemical 

reactions) 
– Useful for production of industrial chemicals and drugs 
– Potential environmental applications: degrading toxins or producing 

biofuels 
• Designing proteins that bind specifically to other proteins 

– Potential for HIV, cancer, Alzheimer’s treatment 
– Special case: antibody design  

• Designing sensors (proteins that bind to and detect the 
presence of small molecules—e.g., by lighting up or changing 
color) 
– Calcium sensors used to detect neuronal activity in imaging studies 
– Proteins that detect TNT or other explosives, for mine detection 

• Making a more stable variant of an existing protein (to 
facilitate experimental investigation)



Classical problem definition
• Given the desired three-dimensional structure of a protein, 

design an amino acid sequence that will assume that 
structure. 
– Of course, a precise set of atomic coordinates would determine the 

sequence.  Usually we start with an approximate desired structure. 
– The problem of designing an amino acid sequence that will adopt a 

desired backbone structure is also known as “sequence design.” 

http://www.riken.jp/zhangiru/images/sequence_protein.jpg

Note: the term “protein design” is sometimes used to describe several different 
(though related) problems



How do we choose the desired 
structure?

• Until recently, this was typically done with various 
ad hoc methods 

• Lately, it’s become more systematic, and is now 
sometimes called “structure design.” 
– I will use that term here.

Note: the term “protein design” is sometimes used to describe several different 
(though related) problems



Typical protein design workflow
1. Based on design goals (e.g., desired function), 

choose structural requirements (e.g., some 
small part of the protein must adopt a particular 
structure, with the rest holding that part in place) 

2. Structure design: select a backbone structure 
that is compatible with structural requirements 
and that is “designable” (i.e., “achievable” by 
real proteins) 

3. Sequence design: select an amino acid that will 
adopt (fold into) the desired backbone structure 

4. Perform wet-lab experiments to check which 
designs work, and (optionally) to improve them

Computation 
(or Human 
expert 
judgement)

Computation

Wet-lab 
experiments

Human expert 
judgement



Sequence design
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Given the desired folded structure (specified by backbone coordinates), come up with a 
sequence that folds into that structure



The “direct” approach  
(doesn’t work in practice!)

• Given a target structure, search over all possible 
protein sequences 

• For each protein sequence, predict its structure, 
and compare to the target structure 

• Choose the best match
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Why doesn’t the “direct” approach work?

• Computationally intractable 
– Huge number of sequences to consider 

• 20N possible sequences with N residues 

• May not be good enough! 
– Protein structure prediction remains imperfect, 

especially for proteins substantially different from 
naturally occurring ones 

– We want to maximize the probability of the desired 
structure (compared to all other possible folded and 
unfolded structures) 
• We could do this by sampling the full Boltzmann 

distribution for each candidate sequence … but that’s very 
difficult for even one sequence! 13



Sequence design
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Traditional approach:  
Energy minimization



Simplify this problem by making a few 
assumptions

1. Assume the backbone geometry is fixed 
2. Assume each amino acid can only take on a 

finite number of geometries (rotamers) 
3. Assume that what we want to do is to maximize 

the energy drop from the completely unfolded 
state to the target geometry 
– In other words, simply ignore all the other possible 

folded structures that we want to avoid
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The simplified problem

• At each position on the backbone, choose a rotamer (an amino 
acid type and a side-chain geometry) to minimize overall energy 
– Assume our energy function specifies a free energy.  The Rosetta all-

atom force field is a common choice. 
– For each amino acid sequence, energy is measured relative to the 

unfolded state.   
– Assume that energy can be expressed as a sum of terms that depend 

on one or two rotamers each.  This is the case for the Rosetta force 
fields (and for most molecular mechanics force fields as well).  

• Thus, we wish to minimize total energy ET, where
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ET = Ei (ri )+ Eij (ri ,rj )
i≠ j
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Note that ri specifies both the amino acid residue at position i 
and that residue’s side-chain geometry



Optimization methods

• Heuristic optimization methods are used in the great 
majority of protein design today 
– Not guaranteed to find optimal solution, but faster than 

exact methods 
– Most common is Metropolis Monte Carlo 

• Moves may be as simple as randomly choosing a position, 
then randomly choosing a new rotamer at that position 

• May decrease temperature over time (simulated annealing)



Optional: “Flexible backbone” design

• One of our key simplifying assumptions was that 
of a fixed backbone geometry. 

• For many applications, protein design works better 
if you give the backbone some limited “wiggle 
room.” 

• This requires optimizing simultaneously over 
rotamers and backbone geometry. 
– Often addressed through a Monte Carlo search 

procedure that alternates between local tweaks to 
backbone dihedrals and changes to side-chain rotamers 

– One can also refine a designed structure by local 
energy minimization, then re-optimize the side chains 



Optional: Negative design

• Another simplifying assumption was that we simply 
minimize the energy of the desired structure 
– We do not consider all other possible structures.  It’s possible 

that their energy ends up even lower. 
• In negative design, we identify a few structures that we want to 

avoid, and we try to keep their energies high during the design 
process.   
– This can help, but we cannot explicitly avoid all possible 

incorrect structures without making the problem much more 
complicated.  So the overall approach is still heuristic. 

• One can also perform structure prediction for designed 
sequences as a way to filter out ones that fold to an 
undesired structure
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Sequence design
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Newer approach:  
Machine learning



Lots of recent work on machine learning 
for protein sequence design

And  
many 
more!

NeurIPS, 2019

Nature Communications, 2022

Science, 2022

I will focus on the last of these (ProteinMPNN), as it’s the first to be used 
widely for actual protein design



ProteinMPNN
• Basic idea: train a machine learning method to 

predict sequences of real proteins given their 
backbone structures 
– Importantly, add noise to the backbone coordinates in 

training 
• ProteinMPNN goes through the sequence positions 

in a random order, predicting amino acid identities 
based on (1) backbone geometry and (2) amino 
acid identities already predicted at other positions 
– It can be run may times, generating a different sequence 

each time. Each of these is a candidate design.
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ProteinMPNN
• MPNN = message-passing neural network 

(operates on graphs)  
• ProteinMPNN uses a graph to represent the 

backbone structure 
– That is, distances between atoms in the backbone
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and B with sequence A1, A2,… and B1, B2,…,
the amino acids for chains A and B have to
be the same for corresponding indices; we
implement this by predicting unnormalized
probabilities for A1 and B1 first and then com-
bining these two predictions to construct a
normalized probability distribution from
which a joint amino acid is sampled (Fig. 1C).
For pseudosymmetric sequence design, res-
idues within or between chains can be sim-
ilarly constrained; for example, for repeat
protein design, the sequence in each repeat
unit can be kept fixed. Multistate design of
single sequences that encodes two or more
desired states can be achieved by predicting
unnormalized probabilities for each state
and then averaging; more generally, a linear
combination of predicted unnormalized prob-
abilities with some positive and negative co-
efficients canbeused toupweight ordownweight
specific backbone states to achieve explicit
positive or negative sequence design. The ar-
chitecture of this multichain and symmetry-
aware (positionally coupled) model, which we
call ProteinMPNN, is outlined schematically
in Fig. 1A.We trained ProteinMPNNonprotein

assemblies in the PDB (as of 2 August 2021)
determined by x-ray crystallography or cryo–
electronmicroscopy (cryo-EM) to better than
3.5-Å resolution and with fewer than 10,000
residues (see methods).
For a test set of 402 monomer backbones,

we redesigned sequences using Rosetta fixed
backbone combinatorial sequence design [one
round of the PackRotamersMover (11, 12) with
default options and the beta_nov16 score func-
tion] and ProteinMPNN. Although requiring
only a small fraction of the compute time
(1.2 versus 258.8 s on a single CPU for 100 res-
idues), ProteinMPNN had a much higher over-
all native sequence recovery (52.4 versus 32.9%),
with improvements across the full range of
residue burial from protein core to surface
(Fig. 2A). Differences between designed and
native amino acid biases for the core, bound-
ary, and surface regions for the two methods
are shown in fig. S2.
We further evaluated ProteinMPNN on a

test set of 690monomers, 732 homomers (with
fewer than 2000 residues), and 98 heteromers.
Themedian sequence recoveries over all residues
were 52% for monomers, 55% for homomers,

and 51% for heteromers, and the median se-
quence recoveries over interface residues were
53% for homomers and 51% for heteromers (Fig.
2B). In all three cases, sequence recovery corre-
lated closely with residue burial, ranging from
90 to 95% in the deep core to 35%on the surface
(fig. S1B); the amount of local geometric context
determines how well residues can be recovered
at specific positions.

Training with backbone noise improves model
performance for protein design

Although protein sequence design approaches
have often focused on maximizing sequence
recovery for protein backbones from high-
resolution crystal structures, this is not necessar-
ily optimal for actual proteindesignapplications.
We found that trainingmodels on backbones
to which Gaussian noise (SD = 0.02 Å) had
been added improved sequence recovery on
confident protein structure models generated
by AlphaFold [average predicted local-distance
difference test (IDDT) > 80.0] from UniRef50,
whereas the sequence recovery on unperturbed
PDB structures significantly decreased (Table
1); crystallographic refinement may impart
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Fig. 1. ProteinMPNN architecture. (A) Distances between N, Ca, C, O, and
virtual Cb are encoded and processed using a message-passing neural network
(Encoder) to obtain graph node and edge features. The encoded features,
together with a partial sequence, are used to generate amino acids iteratively
in a random decoding order. (B) A fixed left-to-right decoding cannot use
sequence context (green) for preceding positions (yellow), whereas a model
trained with random decoding orders can be used with an arbitrary decoding

order during the inference. The decoding order can be chosen such that
the fixed context is decoded first. (C) Residue positions within and between
chains can be tied together, enabling symmetric, repeat protein, and
multistate design. In this example, a homotrimer is designed with the coupling
of positions in different chains. Predicted unnormalized probabilities for
tied positions are averaged to get a single probability distribution from which
amino acids are sampled.
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Structure design
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What do we want our target structure backbone coordinates to be?



Designing the backbone
• The first step of protein design is generally to 

select one or more target backbone structures. 
• Traditionally, this has been as much art as 

science 
– Apparently proteins can only adopt a limited set of 

backbone structures, but there wasn’t a great 
description of what that set is. 

• Traditional methods to design backbone structure: 
– Use an experimentally determined backbone structure 
– Use a fragment assembly program like Rosetta, 

selecting fragment combinations that fit some 
approximate desired structure  

– Assemble secondary structure elements by hand 25



Example of traditional backbone design
– To design “Top7,” a protein with a novel fold, Kuhlman et al. 

started with a schematic, then used Rosetta fragment 
assembly to find 172 backbone models that fit it. 

26

Kuhlman et al., Science 302:1364-8 (2003)

Initial schematic of target fold.  Hexagons = β sheet.  
Squares = α helix.  Arrows = hydrogen bonds.  Letters 
indicate amino acids in final designed sequence 
(these were not determined until much later). 

Final structure



Could one use machine learning for 
backbone design?

• A challenging problem 
– This isn’t simple prediction. Instead, it requires 

generating backbones that satisfy criteria for a given 
design and that will be adopted by one or more actual 
amino amino acid sequences 

• A flurry of recent papers on this problem. I will 
focus on one particularly promising recent 
method.

27
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Article

De novo design of protein structure and 
function with RFdiffusion

Joseph L. Watson1,2,15, David Juergens1,2,3,15, Nathaniel R. Bennett1,2,3,15, Brian L. Trippe2,4,5,15, 
Jason Yim2,6,15, Helen E. Eisenach1,2,15, Woody Ahern1,2,7,15, Andrew J. Borst1,2, Robert J. Ragotte1,2, 
Lukas F. Milles1,2, Basile I. M. Wicky1,2, Nikita Hanikel1,2, Samuel J. Pellock1,2, Alexis Courbet1,2,8, 
William Sheffler1,2, Jue Wang1,2, Preetham Venkatesh1,2,9, Isaac Sappington1,2,9, 
Susana Vázquez Torres1,2,9, Anna Lauko1,2,9, Valentin De Bortoli8, Emile Mathieu10, 
Sergey Ovchinnikov11,12, Regina Barzilay6, Tommi S. Jaakkola6, Frank DiMaio1,2, Minkyung Baek13 
& David Baker1,2,14ಞᅒ

There has been considerable recent progress in designing new proteins using deep- 
learning methods1–9. Despite this progress, a general deep-learning framework for 
protein design that enables solution of a wide range of design challenges, including 
de novo binder design and design of higher-order symmetric architectures, has yet to 
be described. Diffusion models10,11 have had considerable success in image and 
language generative modelling but limited success when applied to protein modelling, 
probably due to the complexity of protein backbone geometry and sequence–structure 
relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction 
network on protein structure denoising tasks, we obtain a generative model of protein 
backbones that achieves outstanding performance on unconditional and topology- 
constrained protein monomer design, protein binder design, symmetric oligomer 
design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic 
and metal-binding protein design. We demonstrate the power and generality of the 
method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing 
the structures and functions of hundreds of designed symmetric assemblies, metal- 
binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the 
cryogenic electron microscopy structure of a designed binder in complex with influenza 
haemagglutinin that is nearly identical to the design model. In a manner analogous to 
networks that produce images from user-specified inputs, RFdiffusion enables the 
design of diverse functional proteins from simple molecular specifications.

De novo protein design seeks to generate proteins with specified 
structural and/or functional properties, for example, making a bind-
ing interaction with a given target12, folding into a particular topology13 
or containing a catalytic site4. Denoising diffusion probabilistic models 
(DDPMs), a powerful class of machine learning models recently dem-
onstrated to generate new photorealistic images in response to text 
prompts14,15, have several properties well suited to protein design. First, 
DDPMs generate highly diverse outputs, as they are trained to denoise 
data (for instance, images or text) that have been corrupted with Gauss-
ian noise. By learning to stochastically reverse this corruption, diverse 
outputs closely resembling the training data are generated. Second, 
DDPMs can be guided at each step of the iterative generation process 
towards specific design objectives through provision of conditioning 

information. Third, for almost all protein design applications it is neces-
sary to explicitly model three-dimensional (3D) structures; rotation-
ally equivariant DDPMs can do this in a global representation frame 
independent manner. Recent work has adapted DDPMs for protein 
monomer design by conditioning on small protein ‘motifs’5,9 or on sec-
ondary structure and block-adjacency (‘fold’) information8. Although 
promising, these attempts have shown limited success in generating 
sequences that fold to the intended structures in silico5,16, probably due 
to the limited ability of the denoising networks to generate realistic 
protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design 
could be developed by taking advantage of the deep understanding of 
protein structure implicit in powerful structure prediction methods 
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Structure design by RFdiffusion
• RFdiffusion (RoseTTAFold Diffusion) is based on the same 

machine learning approach as image generators like DALL-E: 
“denoising diffusion” 
– Originated in Surya Ganguli’s lab, Stanford Applied Physics Dept.

W.D. Heaven, “This 
avocado armchair could be 
the future of AI”, 
Technology Review, 2021 



RFDiffusion
• Gradually convert protein backbone structures to random patterns by 

adding noise (i.e., random numbers) to the position and orientation of 
each amino acid 

• Add this noise to the backbone atom coordinates a little bit at a time, 
over ~200 steps 

• Train a machine learning method that, given the noisy (“messed up”) 
backbone coordinates at one step, predicts the coordinates at the 
previous step (which are slightly less noisy) 
– This learned process is called the “denoising,” “reverse,” or “generative” process

Nature | Vol 620 | 31 August 2023 | 1091

(Fig. 2d). RFdiffusion generation is also more compute efficient than 
unconstrained Hallucination with RF, and efficiency can be greatly 
improved by taking larger steps at inference time and by truncating tra-
jectories early, which is possible because RF predicts the final structure 
at each timestep (Extended Data Fig. 2b,c). For example, a 100-residue 

protein can be generated in as little as 11 s on an NVIDIA RTX A4000 
Graphical Processing Unit, in contrast to RF Hallucination, which takes 
around 8.5 min.

It is often desirable to be able to specify a protein fold during design 
(such as triose-phosphate isomerase (TIM) barrels or cavity-containing 
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Fig. 1 | Protein design using RFdiffusion. a, Diffusion models for proteins are 
trained to recover corrupted (noised) protein structures and to generate new 
structures by reversing the corruption process through iterative denoising  
of initially random noise XT into a realistic structure X0 (top panel). The RF 
structure prediction network (middle panel, left side) is fine-tuned with 
minimal architectural changes into RFdiffusion (middle panel, right side); the 
denoising network of a DDPM is also shown. In RF, the primary input to the 
model is the sequence. In RFdiffusion, the primary input is diffused residue 
frames (coordinates and orientations). In both cases, the model predicts final 
3D coordinates (denoted lX0 in RFdiffusion). The bottom panel shows that in 
RFdiffusion, the model receives its previous prediction as a template input 
(‘self-conditioning’, Supplementary Methods). At each timestep t of a trajectory 
(typically 200 steps), RFdiffusion takes lX

t
0

+1
 from the previous step and Xt and 

then predicts an updated X0 structure (X
t

0
l ). The next coordinate input to  

the model (Xt−1) is generated by a noisy interpolation (interp) towards lX
t

0.  
b, RFdiffusion is broadly applicable for protein design. RFdiffusion generates 
protein structures either without further input (top row) or by conditioning on 
(top to bottom): symmetry specifications; binding targets; protein functional 
motifs or symmetric functional motifs. In each case random noise, along with 
conditioning information, is input to RFdiffusion, which iteratively refines  
that noise until a final protein structure is designed. c, An example of an 
unconditional design trajectory for a 300-residue chain, depicting the input to 
the model (Xt) and the corresponding X0

l  prediction. At early timesteps (high t), 
X0
l  bears little resemblance to a protein but is gradually refined into a realistic 
protein structure.

Watson et al., 
Nature, 2023



RFDiffusion
• Key insight: one can make this denoising process work 

much better by using a structure predictor as a 
component 
– RFDiffusion uses RoseTTAFold as a starting point, and tunes it 

for this application

AlphaFold 2 and recent versions of RoseTTAFold use “recycling,” meaning that they 
run the prediction process several times, feeding the output coordinates as inputs 
to the next prediction. This inspired the use of RoseTTAFold in RFdifussion.



RFDiffusion

• In making its predictions, 
the denoising (generative) 
process can use 
information on properties 
of the protein to be 
generated. This 
approach, known as 
“conditioning,” allows one 
to generate designs with 
desired properties. 
– For example, desired local 

structure (functional 
motifs), symmetry, or 
binding target

Nature | Vol 620 | 31 August 2023 | 1091

(Fig. 2d). RFdiffusion generation is also more compute efficient than 
unconstrained Hallucination with RF, and efficiency can be greatly 
improved by taking larger steps at inference time and by truncating tra-
jectories early, which is possible because RF predicts the final structure 
at each timestep (Extended Data Fig. 2b,c). For example, a 100-residue 

protein can be generated in as little as 11 s on an NVIDIA RTX A4000 
Graphical Processing Unit, in contrast to RF Hallucination, which takes 
around 8.5 min.

It is often desirable to be able to specify a protein fold during design 
(such as triose-phosphate isomerase (TIM) barrels or cavity-containing 
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structures by reversing the corruption process through iterative denoising  
of initially random noise XT into a realistic structure X0 (top panel). The RF 
structure prediction network (middle panel, left side) is fine-tuned with 
minimal architectural changes into RFdiffusion (middle panel, right side); the 
denoising network of a DDPM is also shown. In RF, the primary input to the 
model is the sequence. In RFdiffusion, the primary input is diffused residue 
frames (coordinates and orientations). In both cases, the model predicts final 
3D coordinates (denoted lX0 in RFdiffusion). The bottom panel shows that in 
RFdiffusion, the model receives its previous prediction as a template input 
(‘self-conditioning’, Supplementary Methods). At each timestep t of a trajectory 
(typically 200 steps), RFdiffusion takes lX
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b, RFdiffusion is broadly applicable for protein design. RFdiffusion generates 
protein structures either without further input (top row) or by conditioning on 
(top to bottom): symmetry specifications; binding targets; protein functional 
motifs or symmetric functional motifs. In each case random noise, along with 
conditioning information, is input to RFdiffusion, which iteratively refines  
that noise until a final protein structure is designed. c, An example of an 
unconditional design trajectory for a 300-residue chain, depicting the input to 
the model (Xt) and the corresponding X0

l  prediction. At early timesteps (high t), 
X0
l  bears little resemblance to a protein but is gradually refined into a realistic 
protein structure.

Watson et al., Nature, 2023
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Complementary experimental methods



Computational protein design is often combined 
with experimental protein engineering methods
• For example, computational designs can often be 

improved by directed evolution 
– Directed evolution involves introducing random mutations to 

proteins and picking out the best ones 
– Usually this is done in living cells, with the fittest cells (i.e., 

those containing the “best” version of the protein) selected by 
some measure 

• This is particularly powerful when designing proteins for 
a desired function that can be easily measured in cells

Frances Arnold 

2018 Nobel Prize “for 
the directed evolution 
of enzymes”
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Large language models for protein design



Large language models for protein 
design

• Protein large language models (e.g., the ESM models 
mentioned in the structure prediction lecture) have 
proven very useful for certain protein design tasks 
– These tasks include “optimizing” designed proteins to 

increase binding affinities or enzymatic activity 
– Nice example: Shanker … Hie, Kim, “Unsupervised 

evolution of protein and antibody complexes with a 
structure-informed language model”, Science 2024 

• Some recent papers make much more general claims 
about structure and function design with language 
models alone. Some of these claims remain to be 
tested rigorously.

Optional material



Examples of successful designs
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Designing proteins that bind specific 
ligands 

• The example below required specification of the 
position of certain side chains that will form 
favorable interactions with the ligand

Tinberg et al., Nature 501:212-6 (2013)  

Protein designed to bind tightly to a specific steroid, but not to related molecules



Designing enzymes
• In the example below, the protein holds two molecules in 

just the right relative positions for them to react.  This 
speeds up the reaction. 

38

Molecule 1

Molecule 2

Siegel et al., Science 329:309-13 (2010)  

react more easily than when freely moving around 



Design of a transporter

• De novo design of a protein that transports zinc ions (Zn2+), but 
not calcium ions (Ca2+), across a cell membrane—a process that 
requires the protein to alternate between at least two 
conformations 39

Joh et al., Science 346:1520-24 (2014)  transporter molecules are often extremely selective of 
one ion over others



Designing multi-protein structures

Divine et al., Designed 
proteins assemble antibodies 
into modular nanocages. 
Science 372:eabd9994 (2021) 

“This week we report the 
design of new proteins that 
cluster antibodies into dense 
particles, rendering them more 
effective.”



How well does protein design work?
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How well does protein design work?
• Very impressive recent successes! 
• However, one should keep in mind that: 

– Successful protein design projects often involve making and experimentally 
testing tens of candidate proteins (or more) to find a good one 

– Projects and design strategies that fail generally aren’t published 
– Protein design is not yet a matter of simply “turning the crank,” although 

machine learning methods like ProteinMPNN and RFDiffusion help 
automate it 

• Evaluating/quantifying/comparing the effectiveness of protein 
design methodologies is difficult 
– Checking if a design “works” requires wet-lab experiments 
– To compare methodologies, one would need to synthesize and test many 

designed sequences for each methodology 
– One would need to do this for many protein design problems 
– Different protein design projects may have very different goals, so there 

isn’t a universal metric for how “good” a given sequence is


