Dialogue Datasets

CS294s: Building the Best Virtual Assistant

Ryan Kearns & Lucas Sato
Mentor: Giovanni Campagna
May 14, 2020
Outline

1. Introduction: Why Datasets?
2. MultiWOZ in the Almond/ThingTalk/Genie Context
3. What’s In a Dataset
 ▪ a. Dialogue Generation
 ▪ b. Annotation Generation
 ▪ c. Annotation Styles
4. MultiWOZ Revisited
1. Why Datasets?

“Perhaps the most important news of our day is that datasets—not algorithms—might be the key limiting factor to development of human-level artificial intelligence.”

- Alexander Wissner-Gross, 2016

Harvard University Institute for Applied Computational Science
Outline

1. Introduction: Why Datasets?
2. MultiWOZ in the Almond/ThingTalk/Genie Context
3. What’s In a Dataset
 ▪ a. Dialogue Generation
 ▪ b. Annotation Generation
 ▪ c. Annotation Styles
4. MultiWOZ Revisited
2. MultiWOZ in the Almond/ThingTalk/Genie Context

User: I need to book a hotel in the east that has four stars

Agent: What is your price range?

User: Price doesn’t matter as long as it has free wifi.

Agent: In that case, I would recommend Allenbell.

User: Thanks. Please get me a taxi from here to the hotel.

Figure from Kumar et al. 2020
2. MultiWOZ in the Almond/ThingTalk/Genie Context

- MultiWOZ (and most datasets) has a corpus and annotations.

- We personally only use the former. We don't train on MultiWOZ.
Outline

1. Introduction: Why Datasets?
2. MultiWOZ in the Almond/ThingTalk/Genie Context
3. What’s In a Dataset
 ▪ a. Dialogue Generation
 ▪ b. Annotation Generation
 ▪ c. Annotation Styles
4. MultiWOZ Revisited
3a. Dialogue Generation

Our General Paradigm:

- User
- Agent
- Database & KB
- APIs
- Policy
- Dialogue Training Data (Pre-Annotated)
Human-to-Machine

Bootstrap from an existing dialogue system to build a new task-oriented dialogue corpora.
Example: Let’s Go Bus Information System, used for the first Dialogue State Tracking Challenge (DSTC)

- **User**: real humans interacting with the dialogue system
- **Agent**: existing dialogue system, likely following rigid rule-based dialogue policy

- **Goal**: derived from existing dialogue system
- **Database / KB**: derived from existing dialogue system
- **APIs**: derived from existing dialogue system
- **Policy**: derived from existing dialogue system

Great for expanding the capabilities of an existing domain, but can we generalize beyond this domain?
Machine-to-Machine

Engineer a simulated user plus a transaction environment to manufacture dialogue templates en masse, then map those dialogue templates to natural language. Example: Shah et al., 2018, “a framework combining automation and crowdsourcing to rapidly bootstrap end-to-end dialogue agents for goal-oriented dialogues”

👩‍💼 User: engineered, agenda-based simulator
👨‍💻 Agent: engineered, likely from a finite-state machine

🎯 Goal: derived from scenarios produced by Intent+Slots task schema
🔍 Database / KB: domain-specific, wrapped into API client
🛠 APIs: provided by developer
🔍 Policy: engineered specifically for agent

Great for exhaustively exploring the space of possible dialogues, but will the training data actually match real-world scenarios?
Human-to-Human

If we really want our agents mimicking human dialogue behavior, why not learn from real human conversations?

Example: Twitter dataset (Ritter et al., 2010), Reddit conversations (Schrading et al., 2015), Ubuntu technical support corpus (Lowe et al., 2015)

User: real humans on the Internet
Agent: real humans on the Internet

Goal: ???
Database / KB: ???
APIs: ???
Policy: real human dialogue policies!

Great for teaching a system real human dialogue patterns, but how will we ground dialogues to the KB + API required by our dialogue agent?
Human-to-Human (WOZ)

Humans produce the best dialogue behavior. Let’s use humans to simulate a machine dialogue agent, grounding the dialogue in our KB+APIs.

Example: WOZ2.0 (Wen et al., 2017), FRAMES (El Asri et al., 2017), MultiWOZ{1.0, 2.0, 2.1} (Budzianowski et al., 2018)

User: crowdworker
Agent: crowdworker, simulating a human-quality dialogue system

Goal: provided by the task description
Database / KB: domain-specific, provided to the agent by experimenters
APIs: domain-specific, provided to the agent by experimenters
Policy: up to the crowdworker – nuanced, but maybe idiosyncratic

Great for combining human dialogue policies with grounding in the specific transaction domain, but annotations will be nontrivial – how do we ensure their correctness?
Dialogue Generation – Summary

Human-to-Machine
Bootstrap from an existing dialogue system to build a new task-oriented dialogue corpora.

Machine-to-Machine
Engineer a simulated user plus a transaction environment to manufacture dialogue templates en masse, then map those dialogue templates to natural language.

Human-to-Human
If we really want our agents mimicking human dialogue behavior, why not learn from real human conversations?

Human-to-Human (WOZ)
Humans produce the best dialogue behavior. Let’s use humans to *simulate* a machine dialogue agent, grounding the dialogue in our KB+APIs.
Dialogue Generation – Pros & Cons

Human-to-Machine

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Intuitive to use existing dialogue data for dialogue system development</td>
<td>- Only possible to improve existing, working systems. No generalizations to new domains</td>
</tr>
<tr>
<td>- Initial system’s capacities & biases may encourage behaviors that perform in testing but don’t generalize</td>
<td></td>
</tr>
</tbody>
</table>

Machine-to-Machine

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Full coverage of all dialogue outcomes in domain</td>
<td>- Naturalness of the dialogue mismatches with real interactions</td>
</tr>
<tr>
<td>- Hard to simulate noisy conditions typical of real interactions</td>
<td></td>
</tr>
</tbody>
</table>

Human-to-Human

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Training data will map directly onto real-world interactions</td>
<td>- No grounding in any existing knowledge base or API limits usability</td>
</tr>
</tbody>
</table>

Human-to-Human (WOZ)

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Ground realistic human dialogue within the capacities of the dialogue system</td>
<td>- High prevalence of misannotation errors</td>
</tr>
</tbody>
</table>

Stanford University
Question

Which dialogue generation technique seems most suited for your own project’s domain?
Outline

1. Introduction: Why Datasets?
2. MultiWOZ in the Almond/ThingTalk/Genie Context
3. What’s In a Dataset
 ▪ a. Dialogue Generation
 ▪ b. Annotation Generation
 ▪ c. Annotation Styles
4. MultiWOZ Revisited
3b. Annotation generation

"Built-in" annotations (Machine-generated utterances)

- If the utterance is machine-generated, that it probably already has a formal language annotation
- Annotation is not really separate from the dialogue generation
- WikiSQL [Zhong et al. 2017]

+ Only skill needed is paraphrasing
 - Still less natural and diverse
 - Requires good utterance synthesis
3b. Annotation generation

Manual annotations (Human-generated utterances)
- Annotation as an explicit step in the process
- Usually done on top of provided data, possibly as a separate process
- Spider [Yu et al. 2019]

+ The dataset and the annotations are probably pretty good
- Potentially very expensive (experts often required)
- Sometimes not actually very good
3b. Annotation generation

Machine-assisted annotations (Human-generated utterances)

- Technology used in making the annotation process seamless or easier for humans
- Not necessarily a separate step in the process
- QA-SRL [He et al. 2015]

+ The dataset and the annotations are probably pretty good
- Some upfront cost of developing a good system
- Not always possible
Question

HOW DO YOU THINK MACHINE-ASSISTED ANNOTATION COULD WORK IN YOUR PARTICULAR PROJECT?
Outline

1. Introduction: Why Datasets?
2. MultiWOZ in the Almond/ThingTalk/Genie Context

3. What's In a Dataset
 ▪ a. Dialogue Generation
 ▪ b. Annotation Generation
 ▪ c. Annotation Styles

4. MultiWOZ Revisited
A Fundamental Tradeoff

Expressiveness of your representation vs. Ease of parsing, annotation, and execution
3c. Annotation styles

Key Tradeoff: **expressiveness of the representation vs. ease of annotation/parsing/execution**

- Logical forms [Zettlemoyer & Collins, 2012; Wang et al. 2015]
- Intent and slot tagging [Goyal et al., 2017; Rastogi et al., 2020; many others…]
- Heirarchical representations [Gupta et al., 2018]
- Executable representations
 - SQL [Zhong et al., 2017; Yu et al., 2019]
 - ThingTalk [Campagna et al., 2019]
Rigid logical formalisms for queries results in a **precise, machine-learnable, and brittle** representation.

![Figure 2: Two examples of CCG parses.](image)
Intent and slot tagging

Goyal et al., 2017; Rastogi et al., 2020; many others…

More ubiquitous, less expert-reliant representation allows coverage of more possible dialogue states.

Table 2: Full ontology for all domains in our data-set. The upper script indicates which domains it belongs to. *: universal, 1: restaurant, 2: hotel, 3: attraction, 4: taxi, 5: train, 6: hospital, 7: police.

<table>
<thead>
<tr>
<th>act type</th>
<th>inform* / request* / select123 / recommend123 / not found123 request booking info123 / offer booking1235 / inform booked1235 / decline booking1235 welcome* / greet* / bye* / reqmore*</th>
</tr>
</thead>
<tbody>
<tr>
<td>slots</td>
<td>address* / postcode* / phone* / name1234 / no of choices1235 / area123 / pricerange123 / type123 / internet2 / parking2 / stars2 / open hours3 / departure45 destination45 / leave after45 / arrive by45 / no of people1235 / reference no.1235 / trainID5 / ticket price5 / travel time5 / department7 / day1235 / no of days123</td>
</tr>
</tbody>
</table>

Figure from MultiWOZ (Budzianowski et al., 2018)
Hierarchical Annotations

Gupta et al., 2018

Nesting additional intents within slots allows for function composition & nested API calls.

Figure 1: Example TOP annotations of utterances. Intents are prefixed with \texttt{IN:} and slots with \texttt{SL:}. In a traditional intent-slot system, the \texttt{SL:DESTINATION} could not have an intent nested inside it.
Executable Representations: SQL

Zhong et al., 2017; Yu et al., 2019

Structured nature of the SQL representation helps prune the space of possibly generated queries, simplifying the generation problem.

![Table: CFLDraft](image)

<table>
<thead>
<tr>
<th>Pick #</th>
<th>CFL Team</th>
<th>Player</th>
<th>Position</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Hamilton Tiger-Cats</td>
<td>Connor Healy</td>
<td>DB</td>
<td>Wilfrid Laurier</td>
</tr>
<tr>
<td>28</td>
<td>Calgary Stampeders</td>
<td>Anthony Forgone</td>
<td>OL</td>
<td>York</td>
</tr>
<tr>
<td>29</td>
<td>Ottawa Renegades</td>
<td>L.P. Ladouceur</td>
<td>DT</td>
<td>California</td>
</tr>
<tr>
<td>30</td>
<td>Toronto Argonauts</td>
<td>Frank Hoffman</td>
<td>DL</td>
<td>York</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Question: How many CFL teams are from York College?

SQL:
```
SELECT COUNT CFL Team FROM CFLDraft WHERE College = "York"
```

Result: 2

Figure 2: An example in WikiSQL. The inputs consist of a table and a question. The outputs consist of a ground truth SQL query and the corresponding result from execution.
Executable Representations: ThingTalk

Campagna et al., 2019

Semantic-preserving transformation rules mean **canonical examples** for training the neural semantic parser.
Outline

1. Introduction: Why Datasets?
2. MultiWOZ in the Almond/ThingTalk/Genie Context
3. What’s In a Dataset
 ▪ a. Dialogue Generation
 ▪ b. Annotation Generation
 ▪ c. Annotation Styles
4. MultiWOZ Revisited
4. MultiWOZ Revisited

• MultiWOZ is a human-human dataset, mostly annotated, with intent and slot tagging.
 • But we don't use it fully, so that ends up being less important.

• MultiWOZ proposes itself as a benchmark dataset for:
 • Dialogue State Tracking
 • Dialogue Context-to-Text Generation
 • Dialogue Act-to-Text Generation
Question

ARE THERE "BENCHMARKING BLIND SPOTS" OR BIASES THAT YOUR PROJECT MIGHT SUFFER BECAUSE OF THE DATASET CHOICE?
Thank you!