
Prof. Aiken CS315B Lecture 1 1

Course Introduction
CS315B

Prof. Aiken CS315B Lecture 1 2

Administrivia

• Syllabus on cs315.stanford.edu
• Assignments will be managed through Canvas

• Instructor: Alex Aiken
• 9-10:20 TT

• Structure
• 6 (smallish) programming assignments
• A course project
• Some readings (papers and notes)
• No exams

• Office hours 11-12 Wed and 3-4 Fri
• Ed discussion group
• No lecture recordings

Course Topic

• How do we program modern supercomputers?

• Assumption 1: Current supercomputers are tomorrow’s ordinary
computers.

• Assumption 2: We need new ways to program contemporary
machines.

Prof. Aiken CS315B Lecture 1 3

Course Approach

• Lectures on programming supercomputers
• Past, present and future

• Focus on task-based parallel programming
• And specifically on cuNumeric & Regent
• Developed at Stanford/SLAC, NVIDIA, and LANL

• Programming assignments and the project will use cuNumeric &
Regent

Prof. Aiken CS315B Lecture 1 4

Amdahl’s Law

1
Speedup =

(1 – p) + (p / s)

where
p = portion of the program sped up
s = factor improvement of that portion

Prof. Aiken CS315B Lecture 1 5

Speed vs. # of Processors for Values of p

Prof. Aiken CS315B Lecture 1 6

Discussion

• Amdahl’s law is simple and general
• Not about a specific machine or program

• And unforgiving
• To speed up by 1000x, must parallelize 99.9%
• To reach 10,000x, must parallelize 99.99%
• And these are not very aggressive targets!

Prof. Aiken CS315B Lecture 1 7

Summit

• 4,000+ nodes
• 6 GPUS/node
• 84 stream multiprocessors (SMs)/GPU
• 64-way processing in each SM

• ~120M ”threads”
• 200 PF/sec

Prof. Aiken CS315B Lecture 1 8

Consequences

• Even tiny sequential bottlenecks can matter
• None can remain

• Each order of magnitude improvement requires additional work

• And the temptation to customize to a particular machine is great

Prof. Aiken CS315B Lecture 1 9

Beyond Amdahl’s Law

• But Amdahl’s Law is only one reason why parallel programming is
hard

• Resource management is also hard

Prof. Aiken CS315B Lecture 1 10

An Example

Prof. Aiken CS315B Lecture 1 11

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)

Issue 1

Prof. Aiken CS315B Lecture 1 12

Can I refer to xi,j, xi-1,j, xi,j-1, xi+1,j, xi,j+1 at the same time?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Why Not?

Prof. Aiken CS315B Lecture 1 13

Can I refer to xi,j, xi-1,j, xi,j-1, xi+1,j, xi,j+1 at the same time?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Resource: Memory (Hardware Level)

Distributed Memory
• Hardware exposes physically disjoint memories

Shared Memory
• Hardware provides a single hardware address space

Prof. Aiken CS315B Lecture 1 14

Resource: Memory (Program Level)

Global Address Space
• Programming language allows any piece of data to be named anywhere in the

machine

Local Address Space
• Programming language only allows data to be named that is “near” the

processor

Prof. Aiken CS315B Lecture 1 15

Software vs. Hardware

• Global address space is easy to implement on shared memory
hardware
• Hardware is complex

• Global address space is much more complex to implement on
distributed memory hardware
• Language system is complex

Prof. Aiken CS315B Lecture 1 16

The Example Again

Prof. Aiken CS315B Lecture 1 17

Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Issue 1b

Prof. Aiken CS315B Lecture 1 18

What is the cost of referring to xi,j, xi-1,j, xi,j-1, xi+1,j, xi,j+1?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Locality

• Is the data “close” to the processor?

• Local address space
• Yes, memory references are always cheap
• Programmer structures program for locality

• Global address space
• Memory references may have greatly varying cost
• E.g., on distributed memory machines
• Or machines with caches

Prof. Aiken CS315B Lecture 1 19

Summary: Memory

• Memory is a critical resource

• Who deals with the reality that memory is physically distributed?
• Shared memory: the hardware does it
• Global address space: the compiler/runtime does it
• Local address space: the programmer does it

• Programs can exhibit good or bad locality

Prof. Aiken CS315B Lecture 1 20

Issue 2

Prof. Aiken CS315B Lecture 1 21

Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)
In parallel for each i,j.
How many copies of the program do I need?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Control

• Control is a resource

• Parallel copies of the program require state
• At least a program counter, but usually more
• This state must be stored somewhere and managed

• Note this is different from the question of how many processors there
are
• Number of executing “jobs” not necessarily the same as number of

processors

Prof. Aiken CS315B Lecture 1 22

Answer 1

Prof. Aiken CS315B Lecture 1 23

One control context for each i,j

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Answer 2

Prof. Aiken CS315B Lecture 1 24

One control context for all i,j

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Answer 3

Prof. Aiken CS315B Lecture 1 25

One control context for each processor.

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Question

• What is the output for
• For all i,j compute xi,j = AVG(xi-1,j, xi,j-1, xi+1,j, xi,j+1)

Prof. Aiken CS315B Lecture 1 26

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Issue 2b

Prof. Aiken CS315B Lecture 1 27

Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)
In parallel for each i,j.
In what order do reads and writes happen?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Issue 2b

Prof. Aiken CS315B Lecture 1 28

Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)

Does xi-1,j use the old or new value of xi,j ?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Synchronization

• Many read/write orders are possible

• To ensure a particular order, must use synchronization
• Multiple control contexts must coordinate their actions

• Large variety of synchronization abstractions
• Locks, semaphores, condition variables, barriers, …

Prof. Aiken CS315B Lecture 1 29

Summary: Control

• Control is a resource
• Replicating control is expensive

• Many control contexts
• Parallel jobs run asynchronously
• Synchronization required

• One/few control contexts
• Can still execute on many data elements
• Synchronization built-in

Prof. Aiken CS315B Lecture 1 30

Summary: Control (Cont.)

• Who deals with the fact that the hardware provides a limited number
of control contexts?
• Compiler/runtime system may provide more contexts than physically

available
• Or not: Let the programmer deal with it

• Who deals with synchronization?
• Many strategies from hardware, compiler, programmer, to combinations of all

three

Prof. Aiken CS315B Lecture 1 31

Discussion

• Two fundamental resources

• Memory
• locality

• Control
• synchronization

Prof. Aiken CS315B Lecture 1 32

Hardware

Prof. Aiken CS315B Lecture 1 33

Hardware

Prof. Aiken CS315B Lecture 1 34

Characteristics

• Operations within a die/chip are fast
• Off-chip operations are much slower

• The transistor budget for any chip is fixed
• But is still increasing over time

• Do we spend the transistors on memory or control?

Prof. Aiken CS315B Lecture 1 35

Four Examples

• Vector Processors

• CPUs

• Multicore

• GPUs

Prof. Aiken CS315B Lecture 1 36

Vector Processor

Prof. Aiken CS315B Lecture 1 37

CPUs

Prof. Aiken CS315B Lecture 1 38

Multicore

Prof. Aiken CS315B Lecture 1 39

GPUs

Prof. Aiken CS315B Lecture 1 40

Summary

• Control and memory are fundamental resources

• At the hardware-level, different designs make different tradeoffs

Prof. Aiken CS315B Lecture 1 41

The Memory Hierarchy

• Individual cores
• GPU or CPU w/vector units

• NUMA domains
• Multicore chips
• Boards
• Boxes
• Racks

• Operations within a level are
generally faster than operations
at the next higher level

• But a level has much less
memory than the next level up

Prof. Aiken CS315B Lecture 1 42

Modern Supercomputers

• Consist of
• CPUs
• Multicore
• Vector processors
• GPUs

• Strongly hierachical

Prof. Aiken CS315B Lecture 1 43

Summary

• Parallel programming limited by
• Amdahl’s Law
• 2D resource management problem

• Memory & control
• Different technologies at different scales

• And the roles they play

• Next time: The Way Things Were
• How we’ve programmed these machines for 20+ yrs

Prof. Aiken CS315B Lecture 1 44

