
Prof. Aiken CS 315B Lecture 13 1

StarPU
CS315B

Lecture 13

What is StarPU?

• A task-based runtime

• Similar in motivation to Legion
• Very similar!
• Even though the projects are independent

Prof. Aiken CS 315B Lecture 13 2

History

• First paper in 2008
• First called StarPU in 2009

• Development and application papers through today

• The programming model has converged a bit with Legion over time
• We’ll focus on StarPU as it was, as it represents a different design point

Prof. Aiken CS 315B Lecture 13 3

The Basics

• Task-based
• Dependencies define execution order constraints between tasks

• Task inputs and outputs must be explicitly declared
• Along with Read, Write, Read/Write

• Hierarchical partitioning of data

• Programmer gets
• Automatic task scheduling
• Automated data movement

Prof. Aiken CS 315B Lecture 13 4

Execution Pipeline

• The application submits tasks & dependencies

• The StarPU runtime maintains a dependence graph of tasks

• Tasks that are not dependent on other tasks are placed in a work queue

• A scheduler assigns tasks from the work queue to processors

Prof. Aiken CS 315B Lecture 13 5

Execution Model

Prof. Aiken CS 315B Lecture 13 6

processors

Execution Pipeline

• The application submits tasks & dependencies

• The StarPU runtime maintains a dependence graph of tasks

• Tasks that are not dependent on other tasks are placed in a work queue

• A scheduler assigns tasks from the work queue to processors

Prof. Aiken CS 315B Lecture 13 7

Declaring Dependencies

The application is responsible for declaring dependencies between tasks

declare_deps(tagB, 1, tagA);
declare_deps(tagC, 1, tagA);
declare_deps(tagD, 2, tagB, tagC);

task1->tag_id = tagA;
task2->tag_id = tagD;
…
submit_task(task1);
submit_task(task2);
…
tag_wait(tagD);

Prof. Aiken CS 315B Lecture 13 8

Maintaining Dependencies

• Tasks also must declare privileges on data
• Read, Write, Read/Write

• Data dependencies between tasks are discovered by the runtime
• A dependency between A and B
• A writes some data, B reads it
• System will move the data if necessary to where B executes

Prof. Aiken CS 315B Lecture 13 9

Scheduling

• Given a set of ready-to-execute tasks:
• Which one should be executed next?
• On which processor?

• Tasks may have variants that allow the same task to be run on
different kinds of processors
• E.g., CPUs or GPUs
• Just like Legion

Prof. Aiken CS 315B Lecture 13 10

Scheduling Heuristic

• Estimate the time Time(t,p) to run task t on processor p
• Estimates can be obtained from programmer-supplied models or from

profiling

• Latency(p) = Σt Time(t,p)
• Where the sum is over tasks assigned to p

• Send a new task t’ to the processor p’ that minimizes Time(t,p) +
Latency(p)

Prof. Aiken CS 315B Lecture 13 11

Priorities

• The scheduling heuristic is FIFO

• Tasks can also have priorities
• Allow important tasks to jump the queue
• Doesn’t necessarily interact well with the scheduling heuristic

• Many other scheduling policies have been explored for StarPU

Prof. Aiken CS 315B Lecture 13 12

Partitioning Data

• Data can be partitioned using filters
• Can express blocking of rectangular collections

• Can also be applied recursively
• i.e., can express hierarchical partitioning

• And dynamically
• All partitioning done at runtime

Prof. Aiken CS 315B Lecture 13 13

Partitioning Example

h = register_matrix(&matrix, ptr, n, n, …)

map_filters(matrix, 2, filter_row, 3, filter_col, 3)

block = get_sub_data(matrix, 2, 2, 0);

map_filters(block, 2, filter_row, 2, filter_col, 2);

subblock = get_sub_data(block, 2, 0, 1);

Prof. Aiken CS 315B Lecture 13 14

Picture

Prof. Aiken CS 315B Lecture 13 15

Automated Data Movement

• Multiple tasks may access the same data

• And in different ways
• Reading, writing, reading and writing

• Need to solve two problems
• Be lazy – don’t move data unless necessary

• E.g., to have multiple copies if everyone is reading
• But need to ensure tasks have most recent version

• If a task writes, future reads must come from that version of the data

Prof. Aiken CS 315B Lecture 13 16

Prof. Aiken CS 315B Lecture 13 17

Cache Coherence

• Managing data coherence is not a new problem

• The original and best known version occurs in cache coherent
multiprocessors

Prof. Aiken CS 315B Lecture 13 18

Cache Coherence Problem
• Want to cache shared data to reduce access time
• But also need to ensure caches agree on the value of the data!

19

Interconnection Network

Processor

Cache

Processor

Cache

Processor

Cache

Memory I/O

•••

•••sum=1 sum=10

Prof. Aiken CS 315B Lecture 13

???

Cache Coherence
1. Single-Writer, Multiple-Reader (SWMR) Invariant

For any memory location A, in any given epoch, there is
•one processor that may write (and read) A, or
•some number of processors that may only read A

2. Data-Value Invariant
The value of the memory location at the start of an epoch is
the same as the value of the memory location at the end of its
most recent read–write epoch

read-only
CPUs 2 & 5

read-write
CPU 3

read-write
CPU 1

read-only
CPUs 1, 2, 3

time

Prof. Aiken CS 315B Lecture 13 20

Snoopy Cache Coherence

Bus

Processor

Cache

Processor

Cache

Processor

Cache

Memory I/O

•••

•••

Prof. Aiken CS 315B Lecture 13

Write:
sum=10

sum=1

21

Snoopy Cache Coherence 2

22

Bus

Processor

Cache

Processor

Cache

Processor

Cache

Memory I/O

•••

•••

Prof. Aiken CS 315B Lecture 13

Write:
sum=10

sum=1

X

Snoopy Cache Coherence 3

23

Bus

Processor

Cache

Processor

Cache

Processor

Cache

Memory I/O

•••

•••

Prof. Aiken CS 315B Lecture 13

Dirty
sum=10Need sum!

Old sum=1

Snoopy Cache Coherence 4

24

Bus

Processor

Cache

Processor

Cache

Processor

Cache

Memory I/O

•••

•••

Prof. Aiken CS 315B Lecture 13

Dirty
sum=10

Old sum=1

Need sum!

Cache Coherence Protocol:
MSI State Diagram

PrRd /--

M

BusRdX /
BusWBPrWr /

BusRdX
S

I

PrWr / --

BusRd /
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Abbreviation Action
PrRd Processor

Read
PrWr Processor

Write
BusRd Bus Read

BusRdX Bus Read
Exclusive

BusWB Bus
Writeback

Processor initiated
Bus initiated

Prof. Aiken CS 315B Lecture 13 25

MSI Invalidate Protocol
• Read obtains block in

“shared”
• even if only cached copy

• Obtain exclusive ownership
before writing
• BusRdX causes others to

invalidate
• If M in another cache, will

cause writeback
• BusRdX even if hit in S

• promote to M (upgrade)

PrRd /--

M

BusRdX /
BusWBPrWr /

BusRdX
S

I

PrWr / --

BusRd /
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Prof. Aiken CS 315B Lecture 13 26

A Cache Coherence Example
Proc Action P1 State P2 state P3 state Bus Act Data from
1. P1 read u S -- -- BusRd Memory
2. P3 read u S -- S BusRd Memory
3. P3 write u I -- M BusRdX Memory, P3
4. P1 read u S -- S BusRd P3’s cache
5. P2 read u S S S BusRd Memory
6. P2 write u I M I BusRdX P2’s cache

• Single writer, multiple reader protocol

Prof. Aiken CS 315B Lecture 13 27

Back to the Story ...

Prof. Aiken CS 315B Lecture 13 28

StarPU Implements a MSI Protocol

• Each task has it’s own local “cache”
• The copies of the data it is using

• When a task finishes, the data remains
• Not immediately reclaimed
• Either in modified or shared state

• Thus, new tasks may have choices
• Of which of several versions in shared state to use
• If a task writes, invalidates other copies

Prof. Aiken CS 315B Lecture 13 29

What About Hierarchy?

• But StarPU’s data model also has hierarchy
• May be working on a subset of a larger collection

• How is partitioning/hierarchy incorporated?

Prof. Aiken CS 315B Lecture 13 30

What About Hierarchy?

• Answer:
• Tasks can only use the finest partition available
• When done with a partition, an explicit release writes modified subsets back to the

containing collection

• Thus, tasks work on the leaves of the partitioning hierarchy
• Creating a new level of partition will cause copies from the coarser to finer level when tasks

run
• A release flushes changes back to coarser level

• Allows MSI protocol to be used more or less unchanged

Prof. Aiken CS 315B Lecture 13 31

Legion/Regent

• Legion and Regent have the same issues
• But allow multiple partitions of the same data
• And parent/child regions can be used simultaneously

• Add open and close operations to MSI
• And more states
• Open: A subtree is opened by a task using a subregion
• Close: A subtree is closed by copying dirty data back to the root of the subtree

Prof. Aiken CS 315B Lecture 13 32

Comparison StarPU & Regent

• StarPU
• Relatively small, lightweight system

• Regent
• Much bigger system
• Why?

Prof. Aiken CS 315B Lecture 13 33

What Does StarPU Not Do?

• Two smaller things:

• Less automatic management
• Of dependencies

• Programmer responsible for declaring dependencies
• Of data coherence

• Programmer responsible for open/close operations

• Not as aggressive about scheduling ahead
• Data movement dependencies handled separately
• Overlaps communication/computation, but task launch not tied to data necessarily being

ready

Prof. Aiken CS 315B Lecture 13 34

Big Ticket Item #3

• Data model is dense arrays
• And all examples are dense linear algebra

• No distinct support for unstructured or sparse data

Prof. Aiken CS 315B Lecture 13 35

Big Ticket Item #2

• No support for multiple views of data

• One partitioning of the data can exist at at time

• The language of expressible partitions is also limited
• To things that are very efficient to compute
• Seems necessary given previous point

Prof. Aiken CS 315B Lecture 13 36

Big Ticket Item #1

• Less support for launching large numbers of long-running tasks

• E.g.,
• Regent’s SPMD transformation
• Legion’s explicitly parallel features

• Needed to run on large node counts

Prof. Aiken CS 315B Lecture 13 37

Summary

• StarPU is a close cousin of Legion/Regent

• Well designed!

• Different decisions due to focus on
• Single node (but StarPU does run on large clusters)
• Simpler data model

Prof. Aiken CS 315B Lecture 13 38

