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What is StarPU?

• A task-based runtime

• Similar in motivation to Legion
• Very similar!
• Even though the projects are independent
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History

• First paper in 2008
• First called StarPU in 2009

• Development and application papers through today

• The programming model has converged a bit with Legion over time
• We’ll focus on StarPU as it was, as it represents a different design point
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The Basics

• Task-based
• Dependencies define execution order constraints between tasks

• Task inputs and outputs must be explicitly declared
• Along with Read, Write, Read/Write

• Hierarchical partitioning of data

• Programmer gets
• Automatic task scheduling
• Automated data movement
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Execution Pipeline

• The application submits tasks & dependencies

• The StarPU runtime maintains a dependence graph of tasks

• Tasks that are not dependent on other tasks are placed in a work queue

• A scheduler assigns tasks from the work queue to processors
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Execution Model
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Execution Pipeline

• The application submits tasks & dependencies

• The StarPU runtime maintains a dependence graph of tasks

• Tasks that are not dependent on other tasks are placed in a work queue

• A scheduler assigns tasks from the work queue to processors
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Declaring Dependencies

The application is responsible for declaring dependencies between tasks

declare_deps(tagB, 1, tagA);
declare_deps(tagC, 1, tagA);
declare_deps(tagD, 2, tagB, tagC);

task1->tag_id = tagA;
task2->tag_id = tagD;
…
submit_task(task1);
submit_task(task2);
…
tag_wait(tagD);
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Maintaining Dependencies

• Tasks also must declare privileges on data
• Read, Write, Read/Write

• Data dependencies between tasks are discovered by the runtime
• A dependency between A and B
• A writes some data, B reads it
• System will move the data if necessary to where B executes
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Scheduling

• Given a set of ready-to-execute tasks:
• Which one should be executed next?
• On which processor?

• Tasks may have variants that allow the same task to be run on 
different kinds of processors
• E.g., CPUs or GPUs
• Just like Legion
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Scheduling Heuristic

• Estimate the time Time(t,p) to run task t on processor p
• Estimates can be obtained from programmer-supplied models or from 

profiling

• Latency(p) = Σt Time(t,p) 
• Where the sum is over tasks assigned to p

• Send a new task t’ to the processor p’ that minimizes Time(t,p) + 
Latency(p)
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Priorities

• The scheduling heuristic is FIFO

• Tasks can also have priorities
• Allow important tasks to jump the queue
• Doesn’t necessarily interact well with the scheduling heuristic

• Many other scheduling policies have been explored for StarPU
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Partitioning Data

• Data can be partitioned using filters
• Can express blocking of rectangular collections

• Can also be applied recursively
• i.e., can express hierarchical partitioning

• And dynamically
• All partitioning done at runtime

Prof. Aiken   CS 315B  Lecture 13 13



Partitioning Example

h = register_matrix( &matrix, ptr, n, n, …)

map_filters(matrix, 2, filter_row, 3, filter_col, 3)

block = get_sub_data(matrix, 2, 2, 0);

map_filters(block, 2, filter_row, 2, filter_col, 2);

subblock = get_sub_data(block, 2, 0, 1);
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Picture
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Automated Data Movement

• Multiple tasks may access the same data

• And in different ways
• Reading, writing, reading and writing

• Need to solve two problems
• Be lazy – don’t move data unless necessary

• E.g., to have multiple copies if everyone is reading
• But need to ensure tasks have most recent version

• If a task writes, future reads must come from that version of the data
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Cache Coherence

• Managing data coherence is not a new problem

• The original and best known version occurs in cache coherent 
multiprocessors

Prof. Aiken   CS 315B  Lecture 13 18



Cache Coherence Problem
• Want to cache shared data to reduce access time
• But also need to ensure caches agree on the value of the data!

19
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Memory I/O

•••
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Cache Coherence
1. Single-Writer, Multiple-Reader (SWMR) Invariant 

For any memory location A, in any given epoch, there is
•one processor that may write (and read) A, or 
•some number of processors that may only read A

2. Data-Value Invariant 
The value of the memory location at the start of an epoch is 
the same as the value of the memory location at the end of its 
most recent read–write epoch

read-only
CPUs 2 & 5

read-write
CPU 3

read-write
CPU 1

read-only
CPUs 1, 2, 3

time
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Snoopy Cache Coherence
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Snoopy Cache Coherence 2
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Snoopy Cache Coherence 3
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Snoopy Cache Coherence 4
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Cache Coherence Protocol: 
MSI State Diagram

PrRd /--

M

BusRdX / 
BusWBPrWr / 

BusRdX
S

I

PrWr / --

BusRd / 
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Abbreviation Action
PrRd Processor 

Read
PrWr Processor 

Write
BusRd Bus Read

BusRdX Bus Read 
Exclusive

BusWB Bus 
Writeback

Processor initiated
Bus initiated
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MSI Invalidate Protocol
• Read obtains block in 

“shared”
• even if only cached copy

• Obtain exclusive ownership 
before writing
• BusRdX causes others to 

invalidate
• If M in another cache, will 

cause writeback
• BusRdX even if hit in S

• promote to M (upgrade)

PrRd /--

M

BusRdX / 
BusWBPrWr / 

BusRdX
S

I

PrWr / --

BusRd / 
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --
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A Cache Coherence Example
Proc Action P1 State P2 state P3 state Bus Act Data from
1. P1 read u        S -- -- BusRd Memory
2. P3 read u        S -- S BusRd Memory
3. P3 write u        I -- M BusRdX Memory, P3
4. P1 read u        S -- S BusRd P3’s cache
5. P2 read u        S S                S BusRd Memory
6. P2 write u        I M I BusRdX P2’s cache

• Single writer, multiple reader protocol
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Back to the Story ...
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StarPU Implements a MSI Protocol

• Each task has it’s own local “cache”
• The copies of the data it is using

• When a task finishes, the data remains
• Not immediately reclaimed
• Either in modified or shared state

• Thus, new tasks may have choices
• Of which of several versions in shared state to use
• If a task writes, invalidates other copies
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What About Hierarchy?

• But StarPU’s data model also has hierarchy
• May be working on a subset of a larger collection

• How is partitioning/hierarchy incorporated?
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What About Hierarchy?

• Answer:
• Tasks can only use the finest partition available
• When done with a partition, an explicit release writes modified subsets back to the 

containing collection

• Thus, tasks work on the leaves of the partitioning hierarchy
• Creating a new level of partition will cause copies from the coarser to finer level when tasks 

run
• A release flushes changes back to coarser level

• Allows MSI protocol to be used more or less unchanged
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Legion/Regent

• Legion and Regent have the same issues
• But allow multiple partitions of the same data
• And parent/child regions can be used simultaneously

• Add open and close operations to MSI
• And more states
• Open: A subtree is opened by a task using a subregion
• Close: A subtree is closed by copying dirty data back to the root of the subtree
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Comparison StarPU & Regent

• StarPU
• Relatively small, lightweight system

• Regent
• Much bigger system
• Why?
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What Does StarPU Not Do?

• Two smaller things:

• Less automatic management
• Of dependencies 

• Programmer responsible for declaring dependencies
• Of data coherence

• Programmer responsible for open/close operations

• Not as aggressive about scheduling ahead
• Data movement dependencies handled separately
• Overlaps communication/computation, but task launch not tied to data necessarily being 

ready 
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Big Ticket Item #3

• Data model is dense arrays
• And all examples are dense linear algebra

• No distinct support for unstructured or sparse data
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Big Ticket Item #2

• No support for multiple views of data

• One partitioning of the data can exist at at time

• The language of expressible partitions is also limited
• To things that are very efficient to compute
• Seems necessary given previous point
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Big Ticket Item #1

• Less support for launching large numbers of long-running tasks

• E.g.,
• Regent’s SPMD transformation
• Legion’s explicitly parallel features

• Needed to run on large node counts
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Summary

• StarPU is a close cousin of Legion/Regent

• Well designed!

• Different decisions due to focus on
• Single node (but StarPU does run on large clusters)
• Simpler data model
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