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0. Review on Supervised Learning
In supervised learning, we have a dataset

 where  is the input and  is the
output.
Without the loss of generality, we concern the binary
classification setting, where . This fits naturally into
the scope of the course on preference learning.
The goal is to learn a model  that maps inputs to outputs, i.e.,

.
In passive learning, a dataset is given, and the model is trained
on the entire dataset to minimize the loss function .
This is not always feasible as labeling data can be expensive or
time-consuming.
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1. Introduction to Active Learning
Active learning (AL) is a machine learning paradigm that aims to
reduce the amount of labeled data required to train a model to
achieve high accuracy.
Toward this goal, AL algorithms aim to iteratively select an input
datapoint for an oracle (e.g., a human annotator) to label such
that when the label is observed, the model improves the most.
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1. Introduction to Active Learning
There are two primary setups in active learning:

Pool-based: The model selects samples from a large unlabeled
pool of data. For example, a model for text classification selects
the most uncertain texts from a large pool to ask a human
annotator to label.
Stream-based: The model receives samples sequentially (one
sample at a time) and decides whether to label them. The data is
gone if the decision maker decides not to label it. For example, a
system monitoring sensor data decides on-the-fly whether new
sensor readings are valuable enough to label.
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1. Introduction to Active Learning
Current model trained on current dataset , potential points

 are being investigated. AL will choose one of them to
add to the dataset.
Relative to the model, a proxy highlights the relative value of
each point to model improvement . A naive
proxy is the model’s uncertainty about the point.
The cycle repeats until we collect enough data or the model is
good enough.
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1. Introduction to Active Learning
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1. Introduction to Active Learning
Active learning has been successfully applied to various
domains, including computer vision, natural language
processing, and recommender systems.
It is particularly useful when labeling data is expensive or time-
consuming.
Example applications include autonomous driving, medical
imaging, meteorology, and fraud detection.

Sanna Jarl, Linus Aronsson, Sadegh Rahrovani, and Morteza Haghir Chehreghani. 2021. "Active Learning of Driving Scenario
Trajectories." Eng. Appl. Artif. Intell. 113: 104972.
A. Biswas, N. Abdullah Al, M.S. Ali, I. Hossain, M.A. Ullah, S. Talukder (2023). Active Learning on Medical Image. In: Zheng, B.,
Andrei, S., Sarker, M.K., Gupta, K.D. (eds) Data Driven Approaches on Medical Imaging. Springer, Cham.
Aarti Singh, Robert D. Nowak, and Parameswaran Ramanathan. 2006. "Active Learning for Adaptive Mobile Sensing Networks." 2006
5th International Conference on Information Processing in Sensor Networks, 60–68.
F. Carcillo, YA. Le Borgne, O. Caelen et al. Streaming active learning strategies for real-life credit card fraud detection: assessment and
visualization. Int J Data Sci Anal 5, 285–300 (2018).
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1. Active Preference Learning
Active learning can be applied to preference learning tasks,
where the goal is to learn a model that aligns with human
preferences with limited labeled data and/or high annotation
cost.
For example, we want to teach a robot to cook a meal that you
like, but we can only afford to show it a few recipes.
Active preference learning can help us select the most
informative recipes to label and improve the robot’s cooking
skills efficiently.
In this section, we will cover the theory behind active preference
learning and some examples.
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2. Uncertainty Quantification
Uncertainty is an important quantity used in various acquisition
functions to qualify the informativeness of a sample. Two types
of uncertainty commonly used in ML are:

Epistemic uncertainty (i.e., model uncertainty) is the
uncertainty due to lack of knowledge, which can be reduced
with more data.
Aleatoric Uncertainty (i.e., data uncertainty) is the uncertainty
due to inherent randomness in the data that can not be
reduced with more data.
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2. Uncertainty Quantification
There are three common ways to quantify uncertainty in AL:

Bayesian Approaches provide a principled way to quantify
uncertainty in models such as Bayesian Neural Networks and
Gaussian Processes.

Advantages: Provide principled uncertainty estimates for
various acquisition functions that incorporate prior
knowledge.
Disadvantages: Computationally intractable for many
expressive models.
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2. Uncertainty Quantification
Ensemble Approaches combine multiple models to make
predictions. Some common methods are Random Forest and
Gradient Boosting.

Advantages: Easy to implement, can provide uncertainty
estimates.
Disadvantages: Computational expensive, no prior knowledge,
may not provide calibrated uncertainty estimates.
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2. Uncertainty Quantification
There are also conformal prediction methods. In this lecture, we
will focus on Bayesian approach for qualifying uncertainty.
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3. Acquisition Functions
Acquisition functions are used to select the most informative
samples to label in active learning.
This function quantifies the utility of labeling a particular sample
based on the model’s current state.
Common acquisition functions include uncertainty sampling,
query-by-committee, and BALD.
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3.1. Uncertainty Sampling
Uncertainty sampling selects samples for which the model is
most uncertain. Let  be the input and  be the probability
of output  given . Here are some common uncertainty
sampling acquisition functions:

Entropy Sampling: ,
Margin Sampling: , where  and 
are the two most likely output.
Least Confidence Sampling: , where

 is the most likely output (output with highest
probability).

Zhu, Jingbo, Huizhen Wang, Benjamin Ka-Yin T’sou, and Matthew Y. Ma. 2010. "Active Learning with Sampling by Uncertainty and
Density for Data Annotations." IEEE Transactions on Audio, Speech, and Language Processing 18: 1323–31.
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3.1. Uncertainty Sampling
Example: Consider a binary classification problem with two classes

 and . We have three samples  and the corresponding
predictive distributions are as follows:
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3.1. Uncertainty Sampling
Entropy Sampling
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3.1. Uncertainty Sampling
Entropy Sampling

We would select  for labeling as it has the highest entropy,
indicating the model is most uncertain about its prediction at .

17



3.1. Uncertainty Sampling
Margin Sampling
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3.1. Uncertainty Sampling
Margin Sampling

We would select  for labeling as it has the smallest margin,
indicating the model is most uncertain about the prediction at .
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3.1. Uncertainty Sampling
Least Confidence Sampling
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3.1. Uncertainty Sampling
Least Confidence Sampling

We would select  for labeling as it has the lowest confidence,
indicating the model is most uncertain about the prediction at .
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3.2. Query-by-Committee
The Query-by-Committee selects samples for which the
committee members disagree the most. Given  committee
members and  is the entropy function.

Vote Entropy: , where  is the number of
votes for class .
Consensus Entropy:  where  is the
average probability distribution of the committee members.
KL Divergence: .

Zhu, Jingbo, Huizhen Wang, Benjamin Ka-Yin T’sou, and Matthew Y. Ma. 2010. "Active Learning with Sampling by Uncertainty and
Density for Data Annotations." IEEE Transactions on Audio, Speech, and Language Processing 18: 1323–31.
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3.2. Query-by-Committee
Example: Consider a binary classification problem with two classes

 and . We have three committee members and three samples
. The committee members’ predictive distributions are as

follows, where  is the probability of committee member 
predicting class  given input .

0.6 0.4 0.7 0.3 0.3 0.7

0.3 0.7 0.4 0.6 0.4 0.6
0.8 0.2 0.9 0.1 0.7 0.3
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3.2. Query-by-Committee
Vote Entropy for 

Vote for : 
Vote for : 

Vote Entropy for 

Vote for : 
Vote for : 

Vote Entropy for 

Vote for : 
Vote for : 
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3.2. Query-by-Committee
Vote Entropy for 

Vote for : 
Vote for : 

Vote Entropy for 

Vote for : 
Vote for : 

Vote Entropy for 

Vote for : 
Vote for : 
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3.2. Query-by-Committee
Vote Entropy

Thus, we would select  for labeling as it has the highest vote
entropy, indicating the committee members disagree the most
about the prediction at .
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3.2. Query-by-Committee
Consensus Entropy

Step 1: Compute the consensus probability of each class for each
sample.

Step 2: Compute the entropy of the consensus probability for
each sample.
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3.2. Query-by-Committee
Consensus Entropy

Step 1: Compute the consensus probability of each class for each
sample.
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3.2. Query-by-Committee
Consensus Entropy

Step 2: Compute the entropy of the consensus probability for
each sample.

We would select  for labeling as it has the highest consensus
entropy, indicating the committee members disagree the most
about the prediction at .
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3.3. Bayesian Active Learning by
Disagreement

Bayesian Active Learning by Disagreement (BALD) selects the
samples for which the model believes the most (Shannon)
information can be gained in expectation if these corresponding
labels are observed:

where  denotes entropy. When there is significant disagreement
among models, the predictive entropy (first term) will be large, but
the expected entropy (second term)) will be lower. This difference
represents how much the models disagree with each other. BALD
selects points where this disagreement is maximized.
Houlsby, N., Huszár, F., Ghahramani, Z., & Lengyel, M. (2011). Bayesian Active Learning for Classification and Preference Learning.
ArXiv, abs/1112.5745.

30



3.3. Bayesian Active Learning by
Disagreement

To compute the first term, we can derive the following expression:
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3.3. Bayesian Active Learning by
Disagreement

To compute the second term, we can derive the following
expression:
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3.3. Bayesian Active Learning by
Disagreement

Example: Consider a binary classification problem with two classes
 and . We have two samples  and the model’s predictive

distributions are as follows:

First-time inference (with )

Second-time inference (with )
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3.3. Bayesian Active Learning by
Disagreement

Step 1: Compute the entropy of the model’s predictive distribution
for each sample.

Step 2: Compute the expected entropy of the model’s predictive
distribution for each sample.
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3.3. Bayesian Active Learning by
Disagreement

Step 1: Compute the entropy of the model’s predictive distribution
for each sample.
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3.3. Bayesian Active Learning by
Disagreement

Step 2: Compute the expected entropy of the model’s predictive
distribution for each sample.

⇒ 

⇒ 
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3.3. Bayesian Active Learning by
Disagreement

Step 3: Compute the BALD score for each sample.

We would select  for labeling as it has the highest BALD score,
indicating the model will gain the most information from labeling

.
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3.4 Active Preference Learning by
Variance Reduction

In this method, the main idea is to select new point  for
which the model believes  if labeled as  and
added to , will reduce the variance of the model the most.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. 1996. “Active Learning with Statistical Models.” CoRR cs.AI/9603104.
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3.4 Active Preference Learning by
Variance Reduction

Starting from the expected error at , we have:

where  is the model prediction,  is the true label.

Geman et al., 1992:

Stuart Geman, Elie Bienenstock, and René Doursat. 1992. “Neural Networks and the Bias/Variance Dilemma.” Neural Computation 4:
1–58.
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3.4 Active Preference Learning by
Variance Reduction

The second term  is zero as

Continue to derive the third term:
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3.4 Active Preference Learning by
Variance Reduction

Finally, we have:

The first term is the variance of the true label, which is
independent of the model. We can not change it.
The second term is the bias of the model. We do not have control
over it when selecting data.
The third term is the variance of the model prediction given the
previous data , which can be used to quantify the model’s
uncertainty about the chosen .

Stuart Geman, Elie Bienenstock, and René Doursat. 1992. “Neural Networks and the Bias/Variance Dilemma.” Neural Computation 4:
1–58.
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3.4 Active Preference Learning by
Variance Reduction

Following Cohn et al. (1996), we can denote the third term as:

Written it more explicitly:

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. 1996. “Active Learning with Statistical Models.” CoRR cs.AI/9603104.
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3.4 Active Preference Learning by
Variance Reduction

Recall  is a sample from the input distribution and  is a
candidate from the active learning pool. We define

. The active learning procedure is as follows:

1. Sample candidate points  from .
2. For each candidate point , compute the expected variance

reduction

3. Select the point  to label.

4 Update the model with newly observed data and repeat
43



3.5. Other Acquisition Functions
There are many other acquisition functions that can be used in
active learning, including:

Expected Model Change (Cai et al., 2013)
Expected Error Reduction (Mussmann et al., 2022)
Variance Reduction (Cohn et al., 1996)
Active Thompson Sampling (Bouneffouf et al., 2014)
Mismatch-first Farthest-traversal (Zhao et al., 2020)

Wenbin Cai, Ya Zhang, and Jun Zhou. 2013. "Maximizing Expected Model Change for Active Learning in Regression." In 2013 IEEE 13th
International Conference on Data Mining, 51–60.
Stephen Mussmann, Julia Reisler, Daniel Tsai, Ehsan Mousavi, Shayne O’Brien, and Moises Goldszmidt. 2022. "Active Learning with
Expected Error Reduction."
David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. 1996. "Active Learning with Statistical Models." CoRR cs.AI/9603104.
Djallel Bouneffouf, Romain Laroche, Tanguy Urvoy, Raphaël Féraud, and Robin Allesiardo. 2014. "Contextual Bandit for Active
Learning: Active Thompson Sampling." In International Conference on Neural Information Processing.
Shuyang Zhao, Toni Heittola, and Tuomas Virtanen. 2020. "Active Learning for Sound Event Detection." IEEE/ACM Transactions on
Audio, Speech, and Language Processing 28: 2895–905.
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4. Case study: Active Preference-based
Learning of Reward Functions

Example in autonomous driving: Two candidate trajectories are
provided for comparison. We can observe that  has a smoother
trajectory without any collisions.

Active preference-based learning can be used to learn reward
functions in reinforcement learning. It is used to answer the
following question:
What if humans do not precisely know how an agent should optimally behave in 
an environment but still have some opinion on what trajectories would be 
better than others? 45



4. Case study: Active Preference-based
Learning of Reward Functions

Let us consider a scenario where a human expert provides
controls on the robot’s behavior by comparing two trajectories.
Let a state at step  be ,  be the human prefered control, and

 be the robot’s control.
We define the next state as .
We can model the human’s preference as a reward function

where  is the weight vector,  is the feature function.
Dorsa Sadigh et al. Active preference-based learning of reward functions. 2017.
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4. Case study: Active Preference-based
Learning of Reward Functions

The goal is to learn the expected reward function  over
horizon  from the human’s preferences.

We can define a controled trajectory  as
 and

.

Thus, we can rewrite the expected reward function as

Dorsa Sadigh et al. Active preference-based learning of reward functions. 2017.
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4. Case study: Active Preference-based
Learning of Reward Functions

Recall the previous lecture on preference learning, we can define
the probability of the human preferring trajectory  over  as

Do you find the above equation familiar?
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4. Case study: Active Preference-based
Learning of Reward Functions

With , we can define the probability of the human preferring
trajectory  over  as

and the probability of the human preferring trajectory  over  as

Dorsa Sadigh et al. Active preference-based learning of reward functions. 2017.
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4. Case study: Active Preference-based
Learning of Reward Functions

We can rewrite the probability of the human preferring trajectory
 over  with ,  as

The idea is that we can use a Bayesian update to compute the
posterior of the weight vector  given the human’s preferences.

Dorsa Sadigh et al. Active preference-based learning of reward functions. 2017.
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4. Case study: Active Preference-based
Learning of Reward Functions

The acquisition function used in this case is the following:

Instead of optimizing on , we can reformulate the optimization
problem as

Dorsa Sadigh et al. Active preference-based learning of reward functions. 2017.
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4. Case study: Active Preference-based
Learning of Reward Functions

To solve this optimization problem, in case  is complex, we can
approximate this  by the empirical distribution of the weight
vector .

where  is the Dirac delta function. Then, we can rewrite the
optimization problem as

Now, we can use gradient-based optimization methods to solve this
optimization problem (e g Quasi Newton methods)
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Discussion and QA
Summary

Active learning is a machine learning paradigm that aims to
reduce the amount of labeled data required to train a model.
Active preference learning is used to learn models that align with
human preferences with limited labeled data and/or high
annotation cost.
Acquisition functions are used to select the most informative
samples to label in active learning.
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Discussion and QA
Discussion

What are some challenges of active preference learning? How can
we address them? E.g., scalability, human feedback quality, etc.
Active preference learning can be used in various applications.
Can you think of other applications where active preference
learning can be useful?

Next lecture: Model-free Preference Optimization

54


