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e Today: Choice Modeling

Tools to predict the choice behavior of a group of decision-makers
in a specific choice context.
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Application: Marketing

What features affect a car purchase?

Autoguide.com

Make
Year
Model

Trim

B General Information

Toyota
2013
Camry

4dr Sdn 14 Auto L (Natl)

Invoice

Destination

Local Dealer Pricing
Fuel Economy
Engine
Transmission

Horsepower

$22,235

$20,345

$795.00

Get Free Quotes

25 MPG city/ 35 MPG hwy
2.5L/152 Gas 14

Auto, 6

178 hp @ 6000 rpm

I 1

Honda ~| Ford i |
2013 > 2013 |
Accord Sdn ~| Fusion fd |
4dr 14 Man LX ~| 4drSdnSFWD d |
$21,680 $21,900
$19,849 $20,422
$790.00 $795.00

Get Free Quotes

24 MPG city/ 34 MPG hwy
2.4L/144 Gas 14

Manual, 6

185 hp @ 6400 rpm

Get Free Quotes

22 MPG city/ 34 MPG hwy
2.5L/152 Gas 4

Auto, 6
170hp @ - TBD - rpm
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. | [ Application: Transportation

« How pricing affects route choice
« How much is a driver willing to pay

Image source: https:/ / www.supplychain247.com/article/8_factors_to_consider_when_choosing_route_optimization_software /locus
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Application: Energy Economics

Top down
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Del Granado, Pedro Crespo, Renger H. Van Nieuwkoop, Evangelos G. Kardakos, and Christian Schaffner. "Modelling the energy transition: A nexus of energy system and economic
models." Energy strategy reviews, 20 (2018): 229-235.
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Example: Daily activity-travel pattern of an individual

7:30 am g 7:35 am

drive

walk

drive

’_%\;‘I:fS pm

Wor T Restaurant
5:00 pm pm
1:00 pm
. walk
drive drive
5:30 pm

Source: Chandra Bhat, “ General introduction to choice modeling”
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Application: RL and Language

1. Collect human feedback

A Reddit post is
sampled from the
Reddit TL;DR
dataset.

Various policies are
used to sample N
summaries.

Two summaries are
selected for
evaluation.

A human judges
which is a better
summary of the
post.
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“ is better than k"

2. Train reward model

The post and
summaries judged
by the human are
fed to the reward
model.

The reward model
calculates a reward
r for each summary.

The loss is
calculated based on
the rewards and
human label.

The loss is used to
update the reward
model.
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“j is better than k”
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3. Train policy with PPO

A new postis
sampled from the
dataset.

The policy it
generates a
summary for the
post.

The reward model
calculates a reward
for the summary.

The reward is used
to update the policy
via PPO.

https:/ / openai.com/research /learning-to-summarize-with-human-feedback
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History

Thurstone research into food preferences in the 1920s
Microeconomics: Random Utility Theory (1970s)

® McFadden: Nobel prize in 2000 for the theoretical basis for discrete choice.

Psychology: Duncan Luce and Anthony Marley

® Luce, R. Duncan (1959). “Conditional logit analysis of qualitative choice behavior”

Early use in marketing

B Predict demand for new products that are potentially expensive to produce

Early use in transportation

B Predict usage of transportation resources, e.g., used by McFadden to predict the demand for the Bay

Area Rapid Transit (BART) before it was built
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Why are we studying choice models?

« Human preferences are often gathered by asking for choices
across alternatives
e Basic choice models are the workhorse for ML from preferences
(Bradley-Terry, Plackett Luce)
e Our discussion will highlight some of the key assumptions, e.g.,
utility and rationality
= We will cover models originally built for discrete/finite choices, which have been

extended to ML applications (conditional choices)
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(Discrete) choice models

e Models designed to capture decision-process of individuals

o True utility is not observable, but perhaps can measure via
preferences over choices

» Main assumption: utility (benefit, or value) that an individual
derives from item A over item B is a function of the frequency
that they choose item A over item B in repeated choices.

 Useful Note: “Utility” in choice models <=> “Reward” in RL
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Modeling: Discrete choice

o Choices are collectively exhaustive, mutually exclusive, and finite

o 1, it U,,; > UnJ\V/]?éZ
Ini =00, otherwise

e 2, are variables describing the individual attributes and the
alternative choices

o H,;(zy;) is a stochastic function, e.g., linear
H,i(21i) = Bzni + €ni, where €,; are unobserved individual
factors
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Implications of the choice model

o Only the utility differences matter

Ppi = Pr(yn; = 1)
= P'r(Um > Unj,\V/j 75 Z)
— P’I‘(Um — Unj > O,V] 75 Z)

 Note that utility here is scale-free
= May be invariant to monotonic transformations
= Ok within a single context, but will need to normalize for
comparing across datasets
= Common approach: normalize scale by standardizing the
variance
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Example: Binary choice with individual attributes

» Benefit of action depends on s,, = individual characteristics

U, = Bsn + €, 1
1 U,>0 = P,=
Yn = {O U, <0 1+ exp(—ﬂsn)

e € ~ Logistic

 Replacing € ~ Standard Normal gives the probit model

nl — (IBSTL)
e Where ®(. ) is the normal CDF
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Example: Utility is linear function of variables that vary over
alternatives (Bradley-Terry Model)

o The utility of each alternative depends on the attributes of the
alternatives (which may include individual attributes)

« Unobserved terms are assumed to have an extreme value
distribution

Unl — /anl + €n1 eXP(,Ban)

Un2 = Bzna + €n2 = P =

€nl, €no ~ 1id extreme value eXP(anl) + exp(ﬂzng)

1
1+exp(—B(zn1—2n2))

e Equivalently P,; =

o Can replace noise with Standard Normal P,; = ®(8(zn1 — 2n2))
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Example: Utility for each alternative depends on attributes of that
alternative

e Unobserved terms are assumed to have an extreme value
distribution
o With J alternatives

. ~ 1id extreme value = o J
i v . j=1 exp(Bzn;)

{Um = Bzp; + €n; pP.— eXp(leni)

o Compare to standard model for multiclass classification
(multiclass logistic)
o Can also replace noise model with Gaussians
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Capturing correlations across alternatives

o All the prior models use the logistic model which does not
capture correlations in noise.
o This can be fixed using a joint distribution over the noise e.g.,

€En = (enla' "7€nJ) ~ N(Oaﬂ)
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Estimation

e Linear case: maximum likelihood estimators
= Logistic model: use (binary or multinomial) logistic regression
= Gaussian Model: use probit regression
« More complex function classes: use standard ML fitting tools for
(regularized) maximum likelihood, e.g., stochastic gradient
descent (SGD)
» Standard tradeoffs, e.g., bias-variance tradeoff
= More complex utility models generally require more data
= Most ML applications pool the model across individuals,
individual differences may matter (more on this in future
class)
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What of measuring ordered preferences?

« Example: On a 1-5 scale where 1 means disagree completely and
5 means agree completely, how much do you agree with the
following statement: “I am enjoying this class so far”

e Use ordinal regression, e.g.,

(1, ifU, <a

2, ifa<U,<b
U, = H,(zn) y, =<3, ifb<U,<c

4, ifec< U, <d

|5, ifU, >d

 For some real numbers a, b, ¢, d (parameters)
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Ordered Logit

o For linear utility: U, = Bz, + €, € ~ Logistic

Pr(choosing 1) S PT'(Un < CL) — PT’(E <a-— ,an) — 1—|—exp(—1(a—,3z )

Pr(choosing 2) = Pr(a < U, < b) = Pr(a — Bz, < e <b— Bz,)
1 1

" 1+exp(—(b—Bzn) 1+ exp(—(a— Bzn))

Pr(choosing 5) = Pr(U, > d) = Pr(e >d — Bz,) =1 —

1
1+exp(—(d—pBzy))

o Can also replace with Gaussian for ordered probit regression
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Plackett-Luce Model

« Ranking models the sequence of choices (Plackett and Luce in

1970s)
o Probability of choice 1, 2, ..., J is
Pr(ranking 1,2,...,J) = exp(fz1)  __ exp(f2) . exp(Bzs-1)

ST exp(Bzn;)  Yaexp(Bzn) Xy exP(Bzn)

e PL is common in biomedical literature

o aka rank ordered logit (econometrics ~1980s), or exploded logit
model

o All the extensions mentioned also apply (nonlinear utility,
correlated noise, etc.)
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Modeling and estimation summary

« Choose the utility model, i.e., how the attributes and alternatives
define the utility e.g., linear function of attributes with logistic
noise

 Choose the response/observation model, e.g., binary, multiple
choice, ordered choice.

o Fit the model using (regularized) maximum likelihood
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Aside: “Revealed preference” vs “stated
preference”

« Revealed preference: Use observed data about the choices to
estimate value ascribed to items.
= Generally offline observational data about real choices
o Stated Preference: Use the choices made by individuals under
experimental conditions to estimate these values
= Generally online experimental data (can include controlled experiments)
 Revealed preference is considered a “real” choice, so can be more
accurate

= [n simulated situations, participants may not respond well to hypotheticals

= OTOH: observed data may not cover the space, hence the appeal of experiments
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Exercise (inclass): choice model for class(es)

e “Should you take CS 329H or not?”
= What are the attributes/features (describe what to measure
about a class)?
= What utility model?
= What is the observation/response model?
= Revealed preference (observed choices) or stated preference
(hypothetical)?
e “Should you take CS 329H or CS 221 or CS 229?”
= What are the attributes/features?
= What utility model?
= What is the observation/response model?
= Revealed preference or stated preference?
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Exercise (inclass): choice model for language

Design a choice model to evaluate the quality of a
language model?

e What utility model?
= What are the attributes/features?
« What is the observation/response model?
» Revealed preference or stated preference?
e Who should you query?
= Individual or pooled responses: why or why not?
e What are some pro/cons of your design?
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