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The ideal point model

« An embedding approach, assumes user item preference depends
on distance
= Let z,, denote a latent vector representing an individual n
= Let v; denote a latent vector representing choice (or item) %
Uni = dist(xp,v;) + €n;
= Model is equivalent to choosing the “closest” item

o 1, ifU,; > UnJ\V/]?éZ
In =00, otherwise
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Ideal point model: the why

o Pros: Can sometimes learn preferences faster than attribute-based
preference models by exploiting geometry (see refs)
e Cons:
= Embedding assumption may be strong (can make more
flexible via distance function choice)
= However, have to select a distance function (usually use
Euclidian distance in the embedding)

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons."
Tatli, Gokcan, Rob Nowak, and Ramya Korlakai Vinayak. "Learning Preference Distributions From Distance Measurements."
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Choice models in RL (and RLHF)

(optional) repeat
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Application: RL and Language

(Bradley-Terry model)

1. Collect human feedback

A Reddit postis
sampled from the
Reddit TL;DR
dataset.

Various policies are
used to sample N
summaries.

Two summaries are
selected for
evaluation.

A human judges
which is a better
summary of the
post.

L
= =
ﬁ_)
v
'

“ is better than k"

2. Train reward model

The post and
summaries judged
by the human are
fed to the reward
model.

The reward model

calculates a reward
r for each summary.

]

“ J l
The loss is : r r
calculated based on ) k
the rewards and L J
human label. 1,

loss = Jogfo(rj— r.))

The loss is used to [
update the reward ”j is better than k”
model.

3. Train policy with PPO

A new postis
sampled from the
dataset.

The policy
generates a
summary for the
post.

The reward model
calculates a reward
for the summary.

The reward is used
to update the policy
via PPO.

https:/ / openai.com/research /learning-to-summarize-with-human-feedback
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Choice models in ML (recommender systems, bandits, Direct
Preference Optimization)

(optional) repeat

(o N

Reward

(o Train a model to
maximize this
utility

g LR

(optional) repeat

Collect some
choice/preference
data

B Collect
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Choice models in ML (recommender systems, bandits, DPO)

(optional) repeat

‘e Collectsome | [

choice/preference e Train a model to

data maximize
likelihood of

preferences
a Collect i /
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Why DPO?

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
e il e
7N b
- — |>| =, » reward model LM policy - — | > | = > final LM
"
preference data maximum sample completions preferencedata . .
likelihood reinforcement learning likelihood

« RLHF pipeline is complex and unstable due to the reward model
optimization.

» DPO is more stable and can be used to optimize the reward
model directly.

Rafael Rafaelov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn, "Direct preference
optimization: Your language model is secretly a reward model."
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DPO: Bradley-Terry model

 Given prompt £ and completions ¥y,, and y; the choice model
gives the preference

exp(r* (T, Yw))
exp(r*(z, yw)) + exp(r*(z, y1))

p*(Yyw > yilz) =

where r*(z, y) is some latent reward model that we do not have
access to (i.e., the human preference)
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DPO: Bradley-Terry model

Luckily, we can use parameterize the reward model with some
neural networks with parameters ¢:

Let us start with the Reward Maximization Objective in RL:
max Bopymy(yia) [7¢(2,Y) — BDk(To(ylz)||mret(y|) )]

» Where 7g(y|x) is the language model, and mf(y|z) is the
reference model (e.g., the language model before fine-tuning)
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max K. .p y~mo(y|z) [’l‘¢(£l3 y) BDkr (7"0 (yl :II) ||7Tref(y|x))]

o

Recall the definition of KL divergence:

p(z
Dk1(pllg) = ) p(=) log ) _ = Ezx llog
zeX .’13)

Then we can rewrite the objective as:

mo(y|T)
]E ~ ~TC T E ~T T 1
H:SX z~D,y~ma(y|z) [r¢(m Y) = Plya(yfo [og Tref (Y] Z) ”

mo(y|z) ]

7Tref(?/|*77)

— Imax EwNDEywwa(Mw) [’I‘¢($, y) — Blog

g
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Then, we can continue to derive the objective as:

mo(y|z) ]

max K, pEyr,(ylz) ro(z,y) — Blog

7o Tref(Y|T)
. - me(ylz) 1 ] .

x minE, pE, .z |10 — —rs(x, reverse and divide 8
tin EopByerie) |08 — 00y~ 5 s(z,9)|//

mo(y|z)

= min E$NDEy~7T0(y|$) log — log Z(:I})

o 1

mwref(mm) eXp (%’rgb(wa y))

1

with Z(z) = Ey:?n-ef(y@) exp (E"”qb(way))
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Because Z(z) is a constant with respect to mg, we can define:

1 1

(o) = s mtlyle) exp ( rofe.) )

Then, we can rewrite the optimization problem as:

mo(y|z)
n}rﬁnEw,\,pEywe(ym llo () — log Z(w)]

= min EqpEyer,yie) Dxz(mo(y/2) |7 (yl2)) — log Z()

m
Thus, the optimal solution (i.e., the optimal language model) is:

ro(yle) = 7" (3]z) = ﬁwref(ym exp (%w(w,y))
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With some algebra, we can show that the optimal reward model is:

7"0(y|$) — ﬁwref(mw) exp (%qu(w,y))

log my(y|z) = log meer(y|x) + %w(w, y) — log Z(x)// perform log(.)

mo(y|T)
Tref (Y| )

re(z,y) = Blog + Blog Z(x)
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exp(r4(, Yu))
exp(74 (T, Yu)) + exp(rg(z, y1))

ps(yuw > yilz) =

We also have the optimal reward model:

mo(y|)
Tref(Y|)

re(x,y) = Blog + Blog Z(x)

Thus, we can rewrite the choice model as:

1
1+ exp (Blog mo(yijz) Blog To(Yw|2) )

Tref (yl ‘ T ) Trref (yw | L )

:a(ﬂlog 7o (Yw|T) Blog mo(y1|x) )

Tret(YulT) Tret (1] )

Ps(yw = yi|z) =
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DPO: Bradley-Terry model

Recall our objective to maximize the reward model, we can rewrite
the objective as maximizing the likelihood of the choice model:

L(re, D) = —E(zy,,u)~D [108Ds(Yuw = y1|T)]

Finally, we can rewrite the objective as:

LDPO(WH; 7Tref) — _E(w,yw,ul)N’D [logp¢(y,w ~ yl|$)]
To(Yw|x) To(yi|x) )]
= -E, -n [logo | Blo — Blo
(Eo)D [ : (ﬂ B et @alz) 8 Trtuila)

Rafael Rafaelov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn, "Direct preference
optimization: Your language model is secretly a reward model."
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IMDb Sentiment Generation TL:DR Summarization Win Rate vs Reference
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Figure 2: Left. The frontier of expected reward vs KL to the reference policy. DPO provides the highest expected
reward for all KL values, demonstrating the quality of the optimization. Right. TL:DR summarization win
rates vs. human-written summaries, using GPT-4 as evaluator. DPO exceeds PPO’s best-case performance on
summarization, while being more robust to changes in the sampling temperature.
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Should your ML application use an explicit
utility / reward model?

e Pro:
= Reward models can be re-used (in principle)
= Reward model can be examined to infer properties of
human(s), and measure the quality of the preference model(s)
= Reward model(s) add useful inductive biases to the training
pipeline
e Cons:
= The extra step of reward modeling can introduce
(unnecessary?) errors

= Reward model optimization can be unstable (e.g., in RLHF, as
argued by DPO)
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A" Some criticisms of choice modeling more
broadly

 Real-world choices often appear to be highly situational or
context-dependent e.g., way choice is posed, emotional states,
other factors not well modeled.
= Arguably what is exploited by marketing. Related to framing
effects (more later).
= A partial rebuttal: In principle, can always add more context to
the model.
e Many choices are intuitive rather than rational, so utility
optimization models do not apply
= Please have limited attention and cognitive capability,
especially for less salient choices
= Default choices are powerful, e.g., in 401K, or opt-in organ
donors
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« What are some key assumptions in (discrete) choice models?
= Rationality (existence of a utility function that determines
choices)
= Parametric model for utility and choice noise
= Finite set of choices, and explicit alternatives
« How does one apply discrete choice models to ML /RL
applications with changing context (input)
= Model utility via generic models (e.g., deep neural networks)
« What are some criticisms of discrete choice models?
= Humans display context-dependent choices
» Humans often make intuitive (or irrational) choices



A‘f*“ﬂ“c"i‘*“ﬁ What is not covered

e Details of estimation, analysis
= Maximum likelihood is generally equivalent to standard
classification /ranking
= Existing analysis (though often interesting) is mostly for linear
(or simpler) utilities
= Many of the interesting theoretical questions are for active
querying settings
e Beyond discrete choice models
= With equivalent alternatives (U; > Uz, U; ~ Uj)
= Continuous “choices” e.g., pricing, demand /supply
= Dynamic discrete choice (for time varying choices) ~ RL
* Experimental design for “stated preferences”
= How to design a survey to measure alternatives, conjoint
analysis
o Active querying (future discussion)
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Summary

« Today: Overview of discrete choice models
= Basics of discrete choice and rationality assumptions
= Benefits and criticisms of discrete choice
= Some special cases and applications of discrete choice models
to ML
e Next Lecture: Student discussion on Human Decision Making
and Choice Models
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