

Section 1: Introduction

Sanmi Koyejo

[All Sections](#)

[Export PDF](#)

Table of Contents

- Introduction
- Examples and Applications
- Why Learn from Human Feedback?
- Algorithms
- Course Goals & Prerequisites

Introduction

“Machine Learning from Human Preferences” explores the challenge of efficiently and effectively eliciting values and preferences from individuals, groups, and societies and embedding them within AI models and applications. Specifically, this course focuses on the **statistical and conceptual foundations** and **strategies for interactively querying humans** to elicit information that can improve learning and applications.

Foundations and strategies for interactively querying humans to elicit information that can improve learning.

Focus on the role of the **human-in-the-loop** for improving learning systems

Foundations in microeconomics, psychology, marketing, statistics ...

Applications to language, robotics, logistics, ...

All of these viewed through the **machine learning** lens (modeling, estimation, evaluation)

Human questions

Bias, correctness, noisiness, rationality, ...

Human(s) may be individuals or groups, how does this change our approach?

Most use cases bring up ethical questions

Which humans?

Does learning from preferences lead to exploitation or other ethical concerns?

This class is not exhaustive!

General AI: Most ML/AI involves learning from humans

Goal is often to imitate human intelligence, i.e., humans are the data source

General ML: Humans define all the steps of the ML/AI process

selecting the problem, data sources, model architectures, optimization, evaluation.

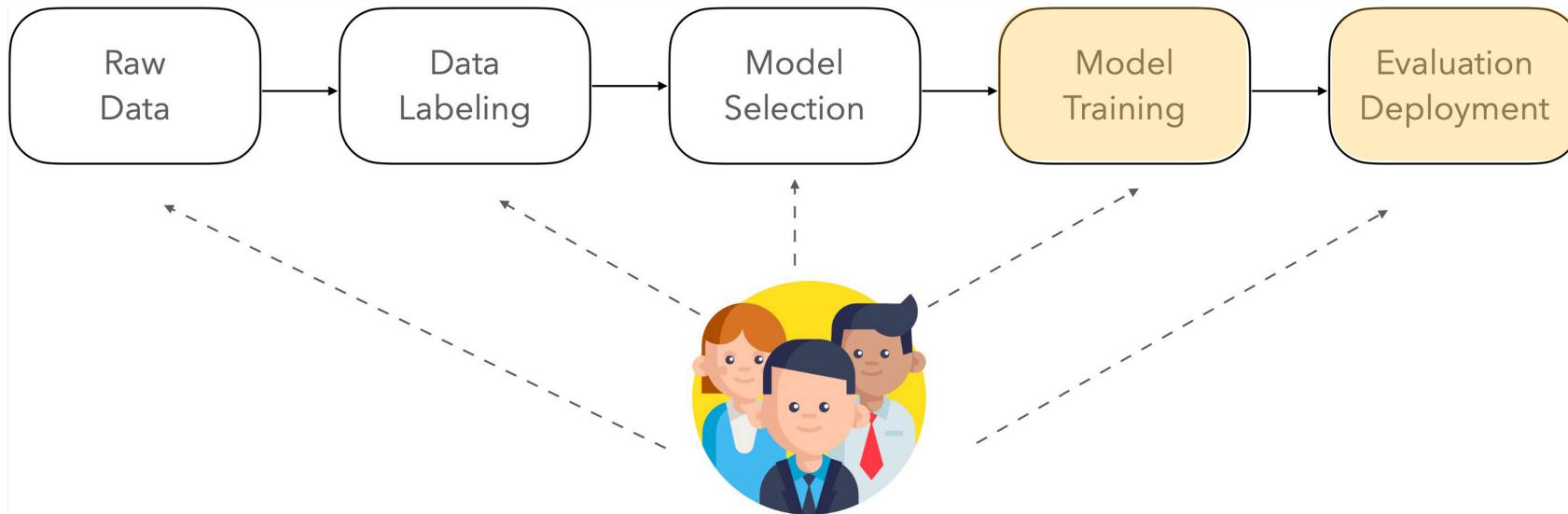
Expert knowledge for defining model architectures
(esp. graphical models, causal inference)

We may discuss a few examples, but not our focus

Human Computer Interaction (HCI)

The interface and elicitation process matters

Feedback can be included at any step of the learning process



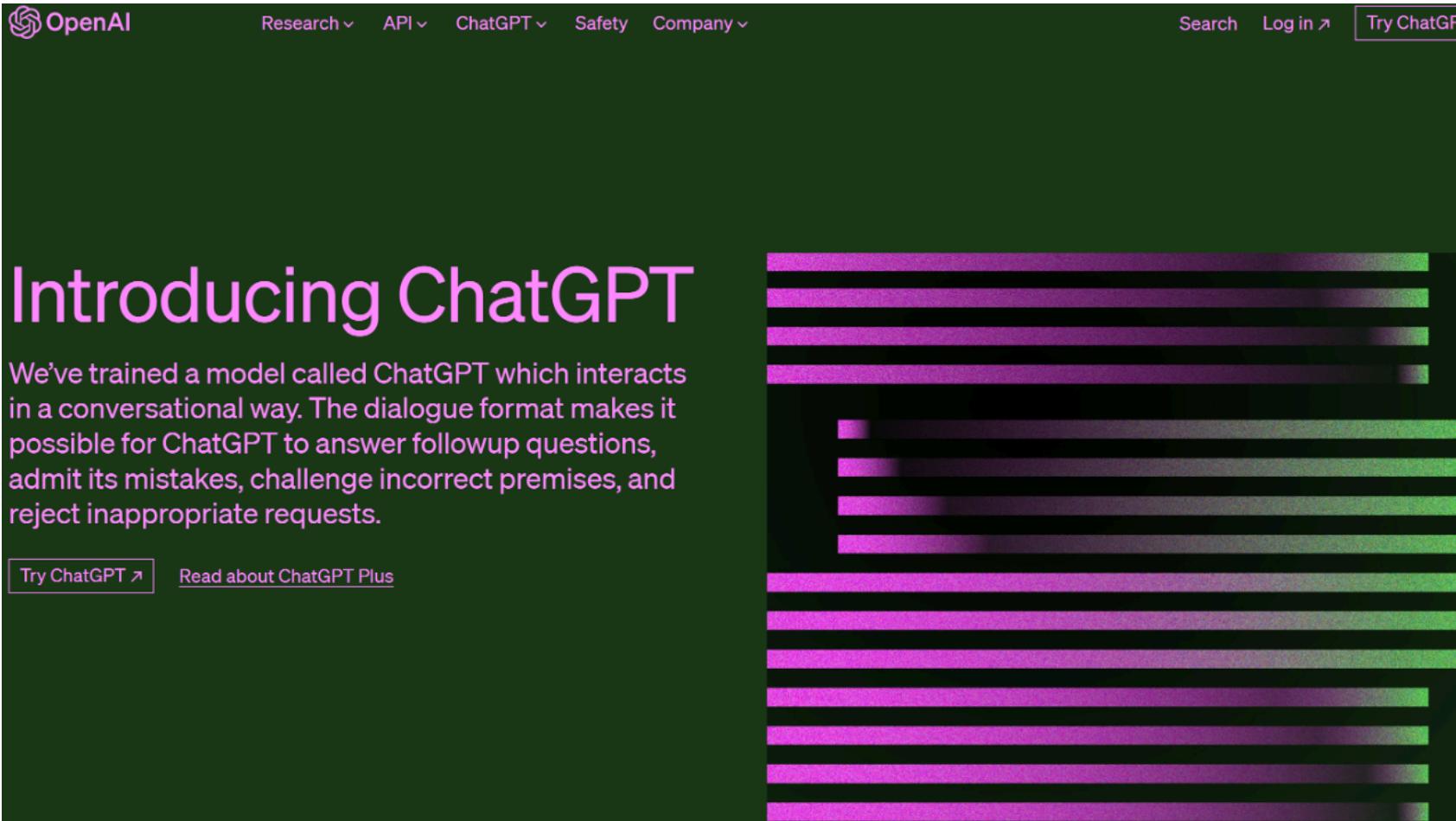
Z. J. Wang, *et al.* "Putting humans in the natural language processing loop: A survey." *HCI+NLP Workshop* (2021). Slides modified from Diyi Yang

Feedback-Update Taxonomy

	Dataset Update	Loss Function Update	Parameter Space Update
Domain	Dataset modification	Constraint specification	Model editing
	Dataset modification	Fairness, Interpretability	Rules, Weights
	Augmentation Preprocessing	Resource constraints	Model selection
	Data generation from constraint		Prior update, Complexity
	Fairness, weak supervision		
	Use unlabeled data		
	Check synthetic data		
Observation	Active data collection	Constraint elicitation	Feature modification
	Add data, Relabel data,	Metric learning, Human representations	Add / remove features,
	Reweighting data, collecting expert labels,	Collecting contextual information	Engineering features
	Passive observation	Generative factors, concept representations, Feature attributions	

C. Chen, *et al.* "Perspectives on Incorporating Expert Feedback into Model Updates." *ArXiv* (2022). Slides modified from Diyi Yang

Examples and Applications



The image is a screenshot of the OpenAI website. At the top, there is a navigation bar with the OpenAI logo, Research, API, ChatGPT, Safety, Company, a Search bar, a Log in button, and a prominent 'Try ChatGPT' button. The main content area features a large, bold title 'Introducing ChatGPT' in white. Below the title, a paragraph of text explains the model's conversational capabilities. At the bottom of this section are two buttons: 'Try ChatGPT' and 'Read about ChatGPT Plus'. To the right of the main content, there is a decorative graphic consisting of a grid of horizontal bars with a color gradient from purple to green.

OpenAI

Research ▾ API ▾ ChatGPT ▾ Safety Company ▾

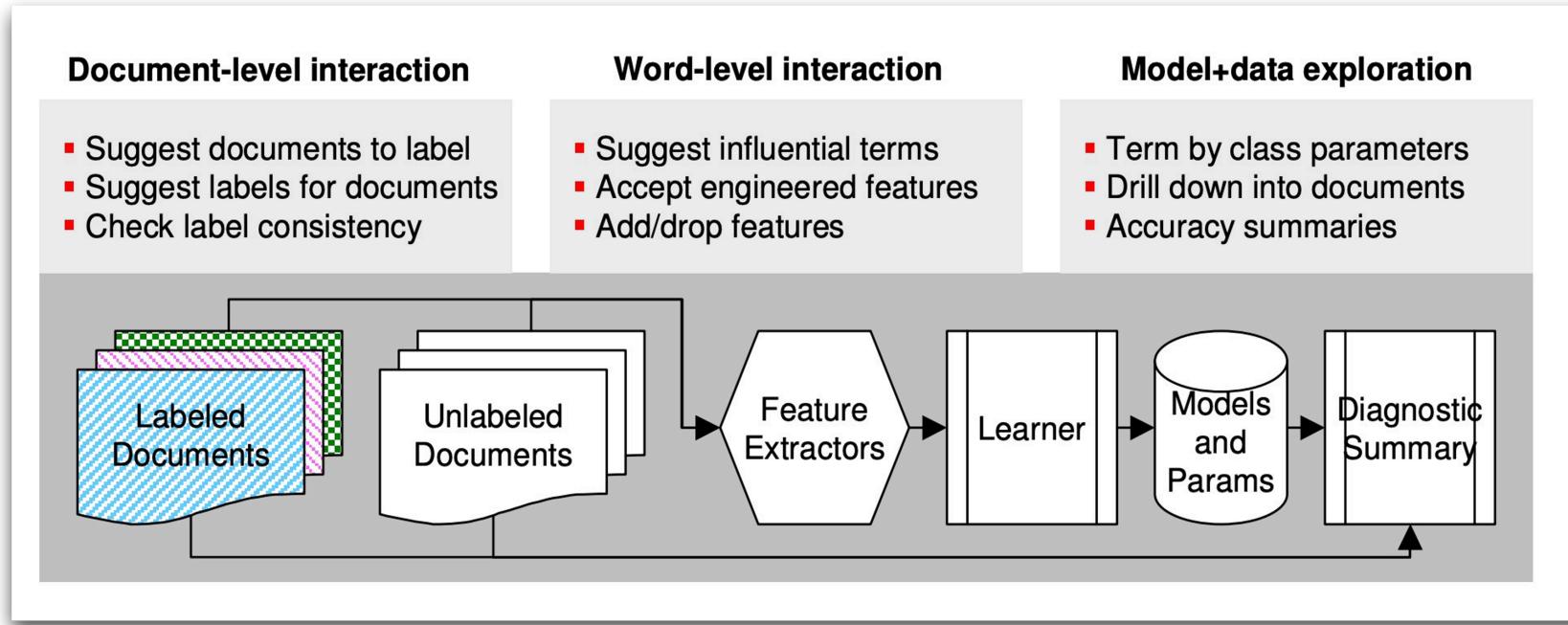
Search Log in Try ChatGPT

Introducing ChatGPT

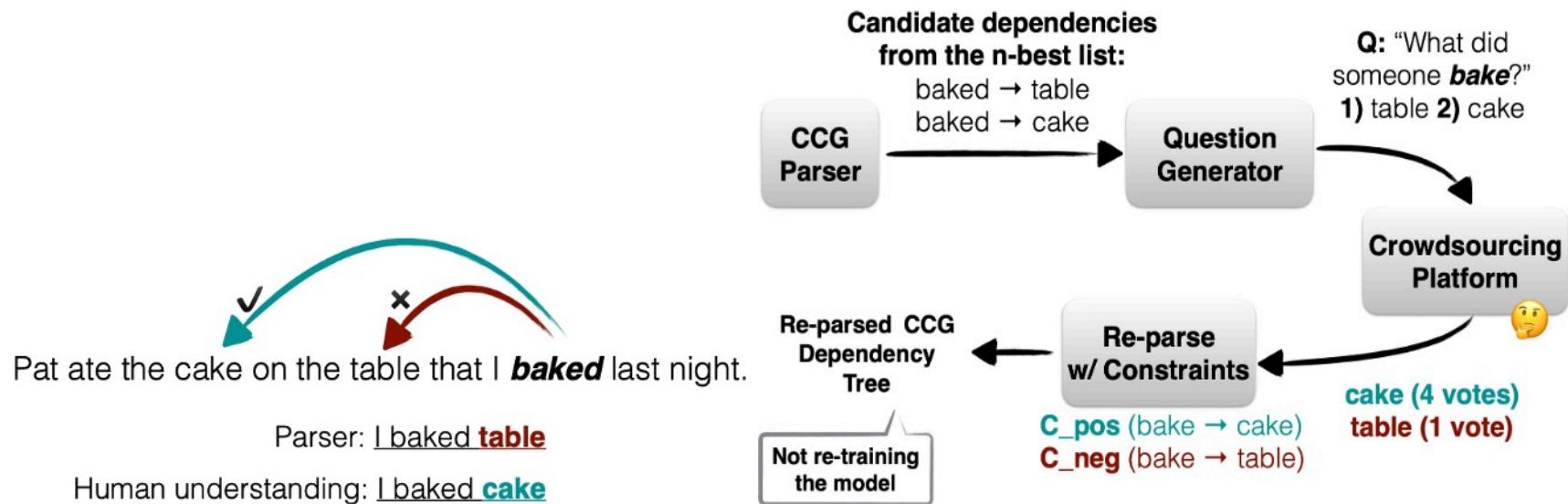
We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

[Try ChatGPT](#) [Read about ChatGPT Plus](#)

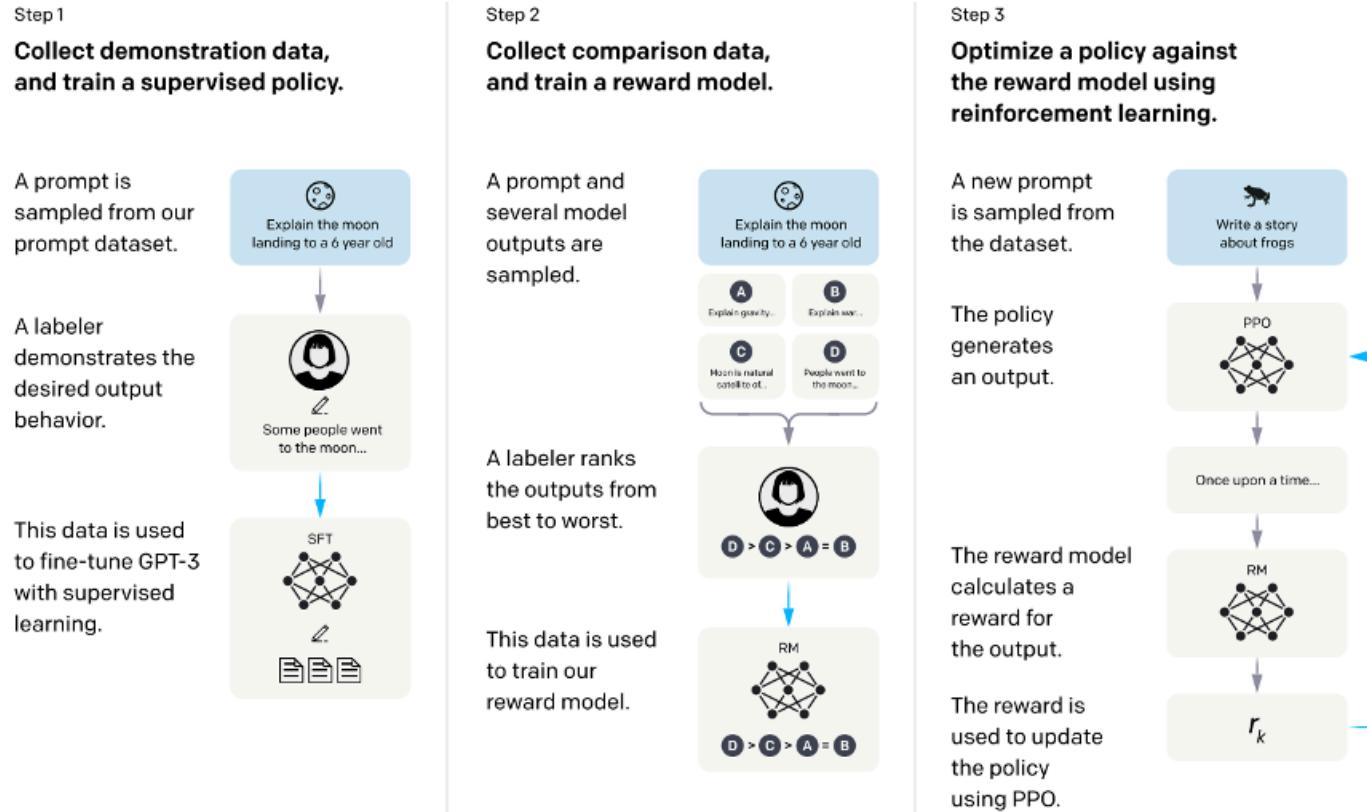
Builds on research studying human feedback in language



Shantanu Godbole, Abhay Harpale, Sunita Sarawagi, and Soumen Chakrabarti. "Document classification through interactive supervision of document and term labels." In *European Conference on Principles of Data Mining and Knowledge Discovery*, pp. 185-196. Springer, Berlin, Heidelberg, 2004.

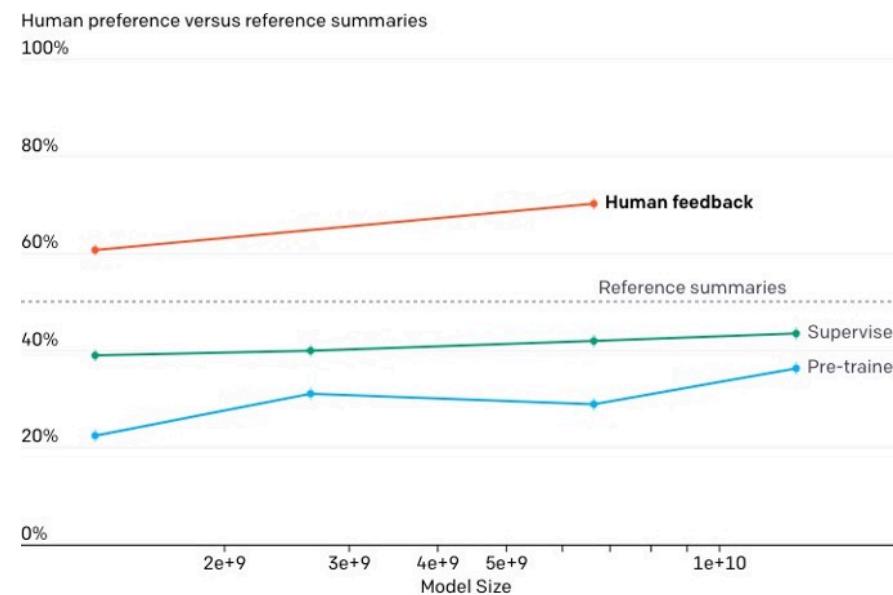


Luheng He, Julian Michael, Mike Lewis, and Luke Zettlemoyer. "Human-in-the-loop parsing." In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp. 2337-2342. 2016.



Ouyang *et. al.*, "Training language models to follow instructions with human feedback"

OpenAI Experiments with RLHF



Nisan Stiennon *et. al.*, "Learning to Summarize with Human Feedback." *Advances in Neural Information Processing Systems* 33 (2020): 3008-3021.

[r/dating_advice] First date ever, going to the beach. Would like some tips

Hey Reddit! I (20M) would like some tips, because I have my first ever date tomorrow (although I've had a gf for 3 years, but no actual dating happened), and we're going to the beach.

I met this girl, we have mutual friends, at a festival a few days ago. We didn't kiss, but we talked, held hands, danced a bit. I asked her to go on a date with me, which was super hard as it is the first time I've asked this to anybody. What I mean to say is, it's not like a standard *first* date because we already spent some time together.

I'm really nervous and excited. I'm going to pick her up tomorrow, we're cycling to the beach which will take 30 minutes, and then what? I'm a bit scared. Should I bring something (the weather, although no rain and sunny, is not super so no swimming), should we do something. I'd like all the tips I can get. Thanks!

Human written reference TL;DR

First date after 3 years in a relationship, going to the beach, terrified. What to bring with me, what to do?

6.7B supervised model

Going on a date with a girl I met a few days ago, going to the beach. What should I bring, what should we do?

6.7B human feedback model

Going on my first ever date tomorrow, cycling to the beach. Would like some tips on what to do and bring. I'm a bit nervous and excited. Thanks!

Why learn from human feedback?

- Provides a mechanism for gathering signals about correctness that are difficult to describe via data or cost functions, e.g., what does it mean to be funny?
- Provides signals best defined by stakeholders, e.g., helpfulness, fairness, safety training, and alignment.
 - Useful when evaluation is easier than modeling ideal behavior.
 - Sometimes, we do not care about human preferences per se; we care about fixing model mistakes.

We have not figured out how to do it quite right (or we need new approaches)

- Reflects some human biases, e.g., length, authoritative tone, etc.
- Human preferences can be unreliable, e.g., “reward hacking in RL.”

Microsoft’s Bing Chatbot Offers Some Puzzling and Inaccurate Responses

The new, A.I.-powered system was released to a small audience a week ago. Microsoft says it is working out its issues.

TECHNOLOGY

Google shares drop \$100 billion after its new AI chatbot makes a mistake

February 9, 2023 · 10:15 AM ET

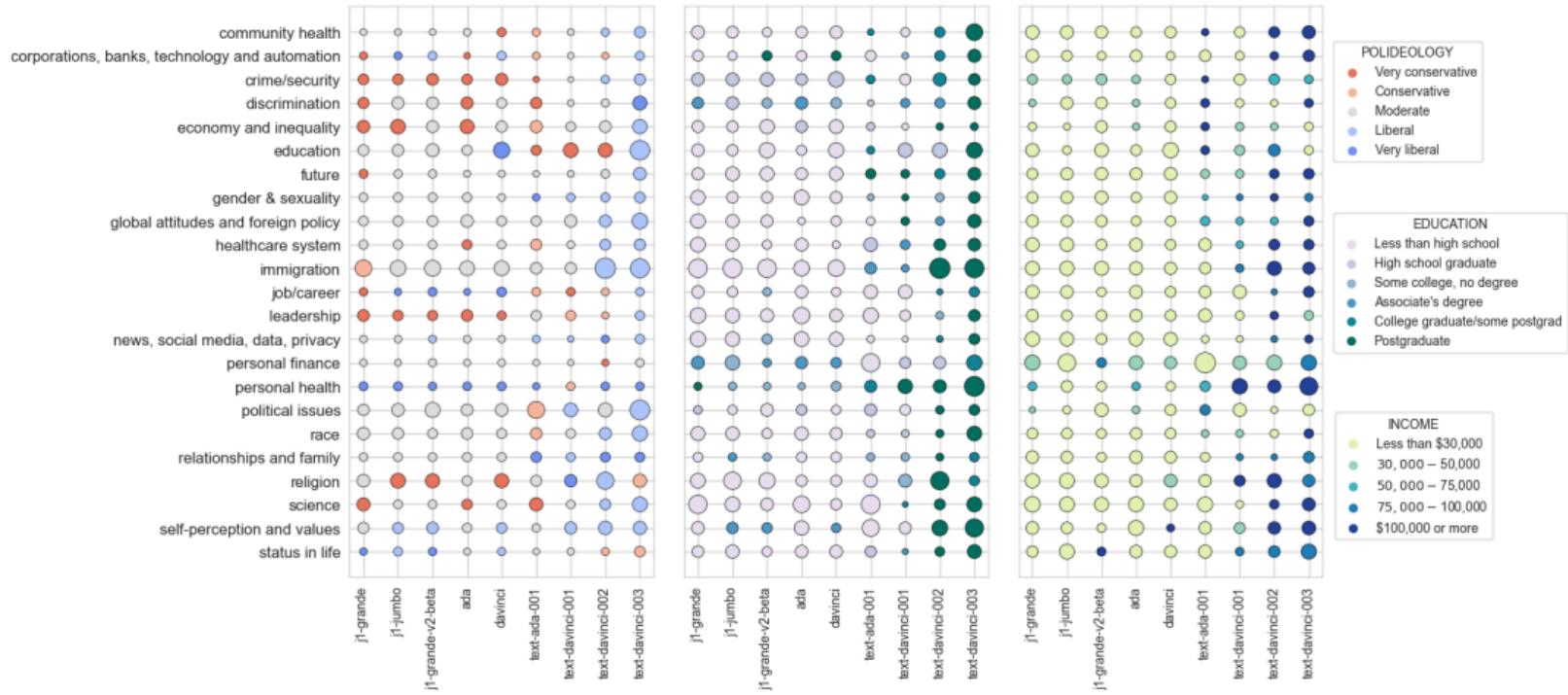
By [Emily Olson](#)

Potential ethical issues

- Labeling often depends on Low-cost human labor
- The line between economic opportunity and employment is unclear
- May cause psychological issues for some workers

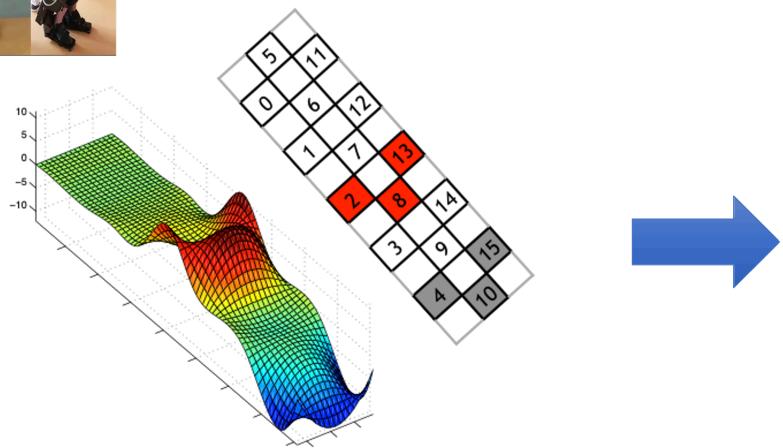
BUSINESS • TECHNOLOGY

Exclusive: OpenAI Used Kenyan Workers on
Less Than \$2 Per Hour to Make ChatGPT Less
Toxic



Santurkar, et. al., "Whose Opinions Do Language Models Reflect?"

Preferences used to personalize therapy

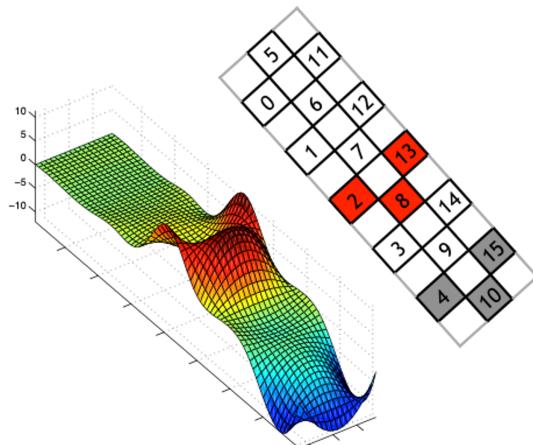


Absolute Feedback: “That felt good, 4/5 rating.”

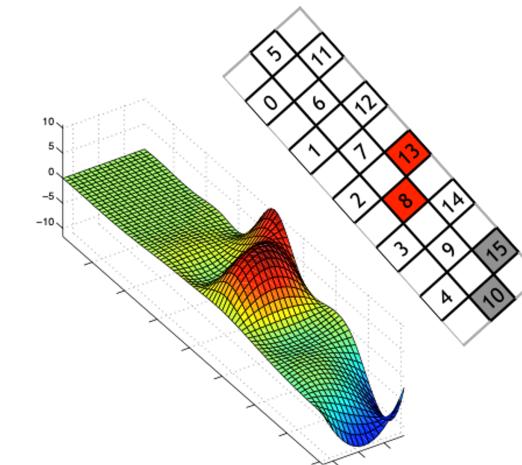
Challenge: humans are not consistent in providing absolute feedback.

Slides adapted from Yisong Yue

Preference feedback + Dueling bandits



Slides adapted from Yisong Yue



Multi-dueling Bandits with Dependent Arms, Sui, Zhuang, Burdick & Yue, UAI 2017

Correlational Dueling Bandits with Application to Clinical Treatment in Large Decision Spaces, Sui, Yue & Burdick, IJCAI 2017

Preference-Based Learning for Exoskeleton Gait Optimization, Tucker, Novoseller, et al., ICRA 2020

Human Preference-Based Learning for High-dimensional Optimization of Exoskeleton Walking Gaits, Tucker et al., IROS 2020

ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton Gait Preference Landscapes, Li, Tucker, et al., ICRA 2021

Algorithms

Determine the fairness and performance metric by interacting with individual stakeholders.

See Hiranandani *et. al.*, "Fair Performance Metric Elicitation"

Metric elicitation from stakeholder groups

See Robertson *et. al.*, "Probabilistic Performance Metric Elicitation"

Empirical evaluation

See Hirandanai *et. al.*, "Metric Elicitation; Moving from Theory to Practice"

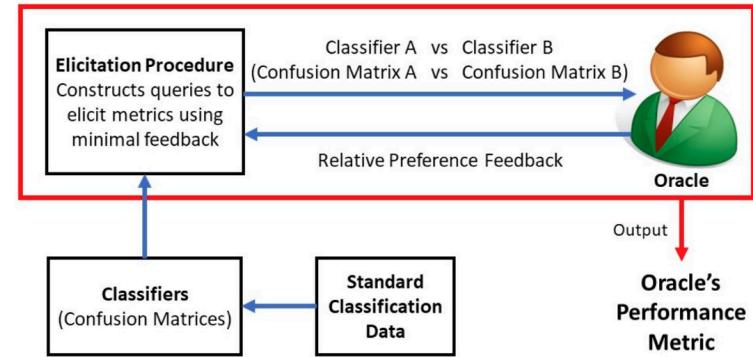


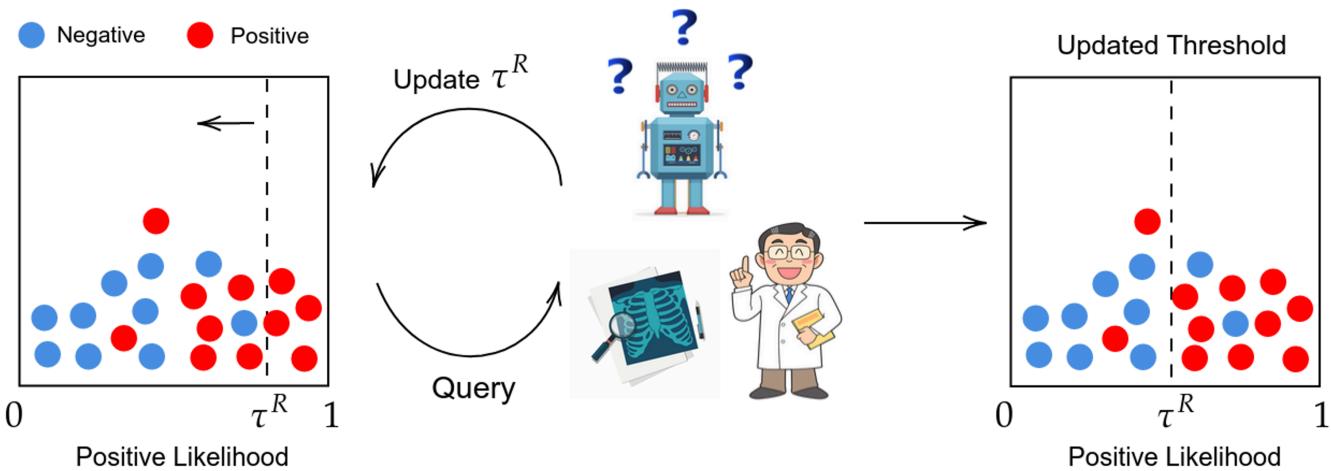
Figure from Hiranandani *et. al.* "Multiclass Performance Metric Elicitation"

Why elicit metric preferences?

Useful when tradeoffs are inherently stakeholder dependent i.e., human preferences are the best approach to measuring what tradeoffs matter

Important for socio-technical tradeoffs e.g., fairness vs performance, privacy vs fairness, ...

Cooperative Inverse Decision Theory (CIDT)



Imitator (R) seeks to learn decision rule matching Demonstrator (H) preferences

Can be formalized as an assistance game (Hadfield-Menell et al., 2016)

Challenge: Highlights description-experience gap in measuring preferences

Robertson *et. al.* "Cooperative inverse decision theory for uncertain preferences," 2023.

Recommendation systems

User item preferences to recommend new items

Both passive (offline data) and active querying (contextual bandits)

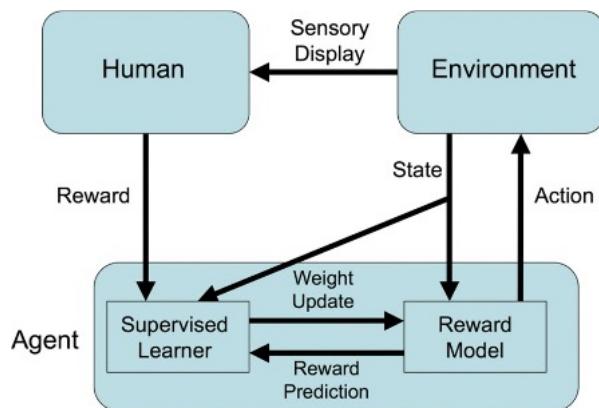
Often ratings, ranking or thumbs up/down feedback

Netflix Awards \$1 Million Prize and Starts a New Contest

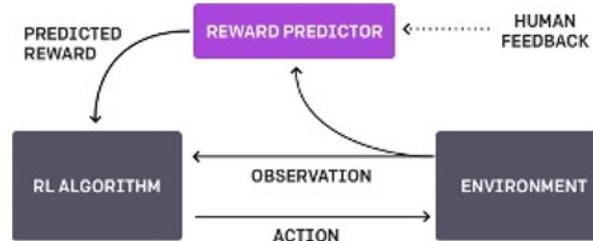
BY STEVE LOHR SEPTEMBER 21, 2009 10:15 AM

Jason Kempin/Getty Images Netflix prize winners, from left: Yehuda Koren, Martin Chabbert, Martin Piotte, Michael Jahrer, Andreas Toscher, Chris Volinsky and Robert Bell.

Reinforcement Learning from Human Preferences (RLHF)



W. Bradley Knox, and Peter Stone. "Tamer: Training an agent manually via evaluative reinforcement." In *2008 7th IEEE international conference on development and learning*, pp. 292-297. IEEE, 2008.



Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. "Deep reinforcement learning from human preferences." *Advances in neural information processing systems*, 30 (2017).

Flying helicopters using imitation learning and inverse reinforcement learning (IRL)

Stanford Autonomous Helicopter - Airshow #1

Adam Coates, Pieter Abbeel, and Andrew Y. Ng. 2008. Learning for control from multiple demonstrations. In *Proceedings of the 25th International Conference on Machine learning (ICML '08)*. Association for Computing Machinery, New York, NY, USA, 144–151.

Batch active preference learning for RL

Batch Active Preference-Based Learning o...

Batch Active Preference-Based Learning o...

E Biyik, D Sadigh, "Batch Active Preference-Based Learning of Reward Functions," *2nd Conference on Robot Learning (CoRL)*, Zurich, Switzerland, Oct. 2018.

Erdem Bıyık's Talk on "APReL: A Library for Active Preference-based Reward Learning Algorithms"

Erdem Bıyık, Aditi Talati, and Dorsa Sadigh. 2022. APReL: A Library for Active Preference-based Reward Learning Algorithms. In *Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction (HRI '22)*. IEEE Press, 613–617.

Reward hacking in inverse RL

CoastRunners 7

Design of tools for eliciting feedback from humans often has to tradeoff several factors

Cognitive load/effort: Human friendly vs model-friendly feedback

Truthfulness: what if there is no “correct” answer?

Accuracy: what of human mistakes? What is the role of expertise?

Recurring assumptions and discussion

Assuming human rationality (~existence of a deterministic reward function).

Human preference often expressed as discrete choice, models often have strong parametric assumptions

Limited work on the role of human biases, do they matter?

Limited work on aggregation in learning applications (lots of work in mechanism design)

RL and active learning emphasize careful querying, while language applications have less focus on active querying. Does it matter?

Course Goals & Prerequisites

Course Goals

- Topics course covering (some) foundations and applications of learning from human preferences. Somewhat focus on breadth/coverage vs. depth
- **Foundations:** Judgement, decision making and choice, biases (psychology, marketing), discrete choice theory, mechanism design, choice aggregation (micro-economics), human-computer interaction, ethics
- **Machine learning and statistics:** Modeling, active learning, bandits
- **Applications:** recommender systems, language models, reinforcement learning, AI alignment
- **Note:** lecture schedule is tentative, and topics / speakers may change

Prerequisites

CS 221 (AI) or CS 229 (ML) or equivalent

You are expected to:

- Be proficient in Python (most homework and projects will include a programming component)
- Be comfortable with machine learning concepts, e.g., train / dev test set, model fitting, function class, loss functions.
- Writing assignments will likely require latex

Books

Our textbook is available online at:

<https://ai.stanford.edu/~sttruong/mlhp>

Next Topics

Human Decision Making and Choice Models (Chapter 2)

Welcome to CS329H
Thank you for your attention!