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1. Evaluating Models

+ 94.1% Accuracy
« 90% false positives * 89.6% Accuracy « 80.1% Accuracy

+ 50% false positives . 10% false positives

5% false negatives )
+ 1% false negatives - 20% false negatives

« What are the tradeoffs of the 3 binary classifiers above? Which
would you choose?

 You'll realize that it depends on the context in which the classifier
is being used.

o In the case of cancer diagnosis, a false negative could result in
death. However, in the context of recidivism prediction, a false
positive means unjustly putting someone behind bars for too
long.
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1. Evaluating Models

Regression metrics

See the Regression metrics section of the user guide for further details.
metrics.explained_variance_score (y_true, y_pred) Explained variance regression score function
metrics.mean_absolute_error (y_true,y pred) Mean absolute error regression loss
metrics.mean_squared_error (y_true,y pred[,...]) Mean squared error regression loss
metrics.mean_squared_log_error (y_true,y pred)  Mean squared logarithmic error regression loss

metrics.median_absolute_error (y_true,y pred) Median absolute error regression loss
metrics.r2_score (y_true,y pred[, ...]) R*2 (coefficient of determination) regression score function.

e When evaluating models, we need to consider the relative
cost/benefit of different kinds of errors.

» The metric is a quantitative description of tradeoffs.

e For many tasks in regression and classification, a variety of
popular metrics are available off the shelf.
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1. Evaluating Models

e One must be careful in choosing the appropriate metrics for a
given task. Metrics are not exchangeable because different
metrics evaluate different areas of model performance.

e Cremonesi, Koren, Turrin (2010) found that the RMSE metric
used for evaluating models submitted to the Netflix Prize
competition did not translate well to top-N ranking accuracy
which more directly impacts what users see.

e In some cases, metrics can even be contradictory. The COMPAS
model used to predict rescindivism in criminal cases was
calibrated on equal accuracy across demographic groups.
However, an analysis by ProPublica found "blacks are almost
twice as likely as whites to be labeled a higher risk but not
actually re-offend," despite the calibration.
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2. Metric Elicitation through Preferences

Elicitation Procedure

Classifier A vs Classifier B

(Confusion Matrix A vs Confusion Matrix B)
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 Determining metrics by interacting with individual stakeholders
= Hiranandani et al. "Performance metric elicitation from
pairwise classifier comparisons.”

» Hiranandani et. al “Multiclass Performance Metric Elicitation’

4

» Hiranandani et. al., “Fair Performance Metric Elicitation”
» Metric elicitation from stakeholder groups
= Robertson et. al., “Probabilistic Performance Metric Elicitation
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2. Metric Elicitation through Preferences

o Preference elicitation is studied in economics and psychology
(Samuelson, 1938; Varian, 2005)

o Elicitation is related to (contextual dueling) bandits, when
focused on recovering reward function (Yue et. al. 2012; Dudik et.
al. 2015)

o Inverse reinforcement learning generalizes elicitation when
reward is transportable (Amin, 2017)
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e We study work by Hiranandani et al. (YEAR) about eliciting
linear binary classification metrics in the noise-free setting.

« Assume we have a data generating distribution P across the
space of inputs X and outputs Y € {0, 1}. The set of all
classifiers is denoted by H = {h : X — [0,1]}. For a given
classifier h, its confusion matrix entries C(h) are

«» TP=Pr(Y=1,h=1)
= FP=Pr(Y =0,h=1)
» FN=Pr(Y =1,h=0)
» TN =Pr(Y =0,h =0)
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2. Metric Elicitation through Preferences

e The metric used by the oracle to evaluate a classifier h is given by
¢*(h) =1— (a;FP(h) + asFN(h)).

« We do not know aj and a5 (which weigh the relative cost of
errors between FP and FN) a priori. The objective is to find
argmax;¢*(h) by querying the oracle with pairs of classifiers
confusion matrices C(h),C(h2) upon which the oracle returns
the preferred classifier w.r.t. ¢*. Ideally, we want to minimize the
number of queries used (i.e., the query/sample complexity).
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2. Metric Elicitation through Preferences
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 The above plot illustrates the region of attainable T'P and T'V
values across all classifiers (). We note that given T'"P and T'N,
FN and F'P are derivable independent of classifier so there are 2
degrees of freedom.

e The region can be shown to be convex. Since ¢* is a linear
function on it, the optimal classifier must lie on the boundary!
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2. Metric Elicitation through Preferences
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e As a result, we unroll the boundary and use a binary search style
algorithm to construct queries for the oracle.

e The authors found that the resulting classifier was guaranteed to
be e-accurate in O(log <) queries. This was true even under
system noise (e.g., noisy responses from the oracle using
probabilistic extensions).

e Work that came after extended to multiclass classification, more
complex metrics, and stakeholder groups.



