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1. Introduction to Dueling Bandit

Motivation

e In real-world applications, the reward of each action is not
directly observable. Instead, the reward of each action is
observed through a comparison with another action(s).

» Example: In a movie recommendation system, the reward of each
movie is not directly observable. Instead, the reward is observed
through the comparison of two or more movies.

Which one do you prefer?
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1. Introduction to Dueling Bandit

Motivation

o Theoretically, we can model this setting as a dueling bandit
problem, where the reward of each action is observed through a
comparison with another action(s).

e There are two main types of dueling bandit problems: contextual
dueling bandit and non-contextual dueling bandit.

e The contextual dueling bandit problem is a variant of the dueling
bandit problem where the decision-maker has access to the
context which can help to make a better decision.



Stanford . . .
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Multi-Armed Bandit Problem

e The multi-armed bandit problem is a classical problem in
sequential decision making. This problem involves a player at a
row of slot machines who has to decide which machines to play,
how many times to play each machine, and in which order to
play them.

o The objective is to maximize the player’s total reward over a
sequence of plays.
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1. Introduction to Dueling Bandit
Dueling Bandit Problem

e The dueling bandit problem is a variant of the multi-armed
bandit problem where the reward of each turn is not observed
directly. Instead, the player observes the pairwise comparison of
the rewards of two arms.

o The objective is to find the best arm without knowing the reward
of each arm after each play.
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1. Introduction to Dueling Bandit

o Let’s define the dueling bandit problem formally. Consider a set
of K bandits B = {by1,...,bx}.

o At each round ¢, the player selects a pair of bandits b;, b; € B and
observes the comparison ¢;; € {1, —1}, where ¢;; = 1 if b; is
preferred to b; and ¢;; = —1 otherwise.
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1. Introduction to Dueling Bandit

o Recall the Bradley-Terry model, which models the probability of
b; being preferred to b; as P(b; > b;) € (0,1), we can define the
model in this setting as:

P(b; = bj) = (c;j+1)/2

e Let us denote €(b;, b;) = c;;j/2. We can rewrite the Bradley-Terry
model as follows:

1
P(bi — bj) = G(bi, bj) + 5
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1. Introduction to Dueling Bandit

By this model, we have the following properties:
G(bi, bz) — O, G(bi, bj) — —G(bj, bz) and,
b; - b; if and only if €(b;,b;) > 0

We also assume there is a total order over the bandits, i.e., there
exists a permutation ¢ such that b,1) = by2) = * - = by (x).-
Without loss of generality, we have

b; > b; if and only if p(7) < ¢ (j)

Thus, the best bandit is b(1).
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1. Introduction to Dueling Bandit

To qualify the decision at each turn ¢, we start to construct the
regret measurement. Recall that the probability of winning or
losing in a pairwise comparison is at least 0.5, the instantaneous
regret is defined as:

Ty = P(b(p(l) — bl) + P(b(p(l) — bz) —1

where 7; is the regret of the decision at turn ¢.
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1. Introduction to Dueling Bandit

Then, the total cumulative regret is defined as:

P(by(r) > bre) + P(byy = baz) — 1]

T
T 1 1
— Z (€(b<p(1)’ b1,t) + 5) + (e(bsO(l)’ ba,t) + 5) - 1]
t=1 L
T

€(by(1); b1t) + €(byry b2t))

where Ry is the total cummulative regret after 1" turns.
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2. Contextual Dueling Bandit

e In real-world applications, many problems require the decision-
maker to have access to the context to make a better decision.

 For example, in a movie recommendation system, the context can
be the user’s age, gender, the movie’s genre, release year, etc.

» Formally, we assume that at each round ¢, the player observes a
context x; € X, where X is the context space.

e Thus, we can model the output of the dueling bandit problem as
a function of the context and the bandits, i.e., e : X x B — .

-1 1
G(bi,bj|.’13i,fl3j) c [T, E]
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2. Preference Learning for Dueling Bandit

o The goal of preference active learning is to find the best bandit
b,(1) with the minimum number of turns (i.e.,, minimum number
of pulled bandits).

o In this problem, the preference learning method must take both
exploration and exploitation into account.
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2. Preference Learning for Dueling Bandit

Traditional acquisition functions for dueling bandit problem:

e Interleaved Filtered (Yue et al., 2012)
e Thompson Sampling (Agrawal & Goyal, 2013)
e Dueling Bandit Gradient Descent (DBGD) (Dudik et al., 2015)

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3(Nov), 397-
422.

Yue, Y., Broder, J., Kleinberg, R., & Joachims, T. (2012). The k-armed dueling bandits problem. Journal of Computer and System
Sciences, 78(5), 1538-1556.

Agrawal, S., & Goyal, N. (2013, May). Thompson sampling for contextual bandits with linear payoffs. In International conference on
machine learning (pp. 127-135). PMLR.

Dudik, M., Hofmann, K., Schapire, R. E., Slivkins, A., & Zoghi, M. (2015, June). Contextual dueling bandits. In Conference on Learning
Theory (pp. 563-587). PMLR.
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 Dueling Posterior Sampling (DPS) is a Bayesian method for
solving the contextual dueling bandit problem.

o It employs preference-based posterior sampling to learn both the
system dynamics and the underlying utility function that
governs the preference feedback.

e In this method, we consider a fixed-horizon Markov Decision
Process (MDP) with a finite number of states and actions.

« We denote the state space as § and the action space as A.

e We can observe that, in this setting, the context ; can be defined
by the states s;, and the bandits b;, b; are the actions a;, a;.

o In this lecture, we consider the discrete state space and action
space.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

e Ateach turn ¢, the player selects a pair of actions a;,a; € A.

« We denote the length-h trajectory of the agent as
T = (Sla A152,Q2y...58h,Qhp, 3h—|—1)'

e In the i*" round, the agent rolls out the trajectory 7;;, 749, and
observes the preference feedback.

« We denote the transition probability as p(s;+1|s¢, a;) and the
preference function ¢ as ¢(7y,72) = P(711 = T2).

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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« We introduce the policy 7 : § x {1,...,h} — A that maps the
state s; to the action a;.

o At each iteration i, the agent samples two policies 7;1, ;2. The
agent then samples the trajectories 71, T2 using the policies 1,
m;9, respectively.

« With a policy , we can compute the expected utility of the
trajectory 7 (i.e., value function) starting at step j as:

h
VW,J'(S) = Ex Z’F(St,ﬂ'(st,t)”sj =¥

t=j

where 7(s;, a;) is the expected utility of the action a; at state s;.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

 Our goal is to find optimal policy m* which can maximize the
expected utility of all input states.

n* = argsup » po(s)Vy1(s)
T seS

where pg(s) is the initial state distribution.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

« We quantify the learning agent performance via its cumulative T-
step Bayesian regret relative to the optimal policy

E[Reg(T)] = E

Z Y " po(s) 2V 1(5) — Vie1(8) = Vi (8))

z—l seS

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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The DPS algorithm is summarized as follows:

Algorithm 1 DUELING POSTERIOR SAMPLING (DPS)

Ho = () {Initialize history}
Initialize prior for f, {Initialize state transition model }
Initialize prior for f, {Initialize utility model}
for:=1,2,...do
i1 <— ADVANCE(fp, fr)
iz <— ADVANCE(fp, fr)
Sample trajectories 751 and 7;2 from 7;; and ;2
Observe feedback y; = [, ] — 3
Hi = Hi—1 U (Ti1, Ti2, ¥i)
fp» fr = FEEDBACK(H.;, fp, fr)
end for

where I, . .1 = P(7;2 > 741) is the indicator function that returns
1 if 750 = 731 and 0 otherwise.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling
ADVANTAGE: Sample policy from dynamics and utility models

Input: f,: state transition posterior, f,: utility posterior

1. Sample p ~ fp(+)
2. Sample 7 ~ f,.(+)

3. Solve m* = argsup., Zseg Po(8)Vr1(s|D, T)
4. Return 7*

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

FEEDBACK: Update dynamics and utility models based on new
user feedback

Input: # = {71, Ti2, i}, fp: state transition posterior, f,: utility
posterior

1. Apply Bayesian update to f, using ‘H
2. Apply Bayesian update to f, using H
3. Return fp, fr

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

In DPS, the process of updating the dynamics posterior is
straightforward. We can assume the dynamics are fully observed
and model them with Dirichlet distribution. Then, the likelihood of
the state transition is multinomial, and we can update the posterior
as follows:

fo(St+1|8t, ar) = Dirichlet(a + count(s¢11|s¢, at))

This formula can be interpreted as we update the posterior by
adding the count of the new state to the prior.
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3. Dueling Posterior Sampling

o The utility posterior is more complex because we perform
Bayesian inference over state-action pairs, and feedback is at
trajectory level.

 Based on Novoseller et al. (2020), we can model the utility using
Bayesian linear regression.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Theoretical Analysis

We will now analyze the asymptotic Bayesian regret of DFS under a
Bayesian linear regression model. The analysis contains three steps:

1. Proving DPS is asymptotic-consistent (i.e., the probability of
selecting the optimal policy converges to 1).

2. Bounding one-sided Bayesian regret for ;3, which means DPS is
only able to select m;9 and 7;; is sampled from a fixed
distribution.

3. Assuming the distribution of 7;; is drifting but converging, we
bound the Bayesian regret for ;5.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Asymptotic consistency of DPS

o Prior to proving the asymptotic consistency of DPS, we need to
prove that the posterior distribution of the dynamics and utility
models converge to the true distribution.

Proposition 1: The sampled dynamics converge in distribution to
their true value as the DPS iteration increase

1. Let the posterior distribution of the dynamics for each state-
action pair s, a; be P(s;41|s¢, a;) and the true distribution be
P*(s¢11|8¢,a¢), withe > 0and 6 > 0:

P(|P(s441|8¢,a:) — P*(s¢41]8¢,a4)| > €) <6
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3. Dueling Posterior Sampling
Asymptotic consistency of DPS

2. Let N(s, a) represent the number of times state-action pair s, a
has been observed. As N(s,a) — oo, the posterior distribution
concentrates around the true distribution P*(s¢11]8¢, a¢).

3. The remaining problem is to prove that DPS will visit all state-
action pairs infinitely often.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Asymptotic consistency of DPS

Lemma 3 (Novoseller et al., 2020): Under DPS, every state-action
pair is visited infinitely-often.

Proof sketch:

 The proof proceeds by assuming that there exists a state-action
pair that is visited only finitely-many times.

o This assumption will lead to a contradiction: once this state-
action pair is no longer visited, the reward model posterior is no
longer updated with respect to it. Then, DPS is guaranteed to
eventually sample a high enough reward for this state-action that
the resultant policy will prioritize visiting it.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling
Asymptotic consistency of DPS

Proposition 2: With probability of 1 — 9, where delta is a parameter
of the Bayesian linear regression model, the sampled rewards
converge in distribution to the true reward parameters, 7, as the
DPS iteration increases.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Asymptotic consistency of DPS

According to Theorem 2 from Abbasi-Yadkori et al. (2011), under
certain regularity conditions, we can bound the error between the
estimated reward parameter 7; and the true reward parameter r;

with high probability. With probability at least 1 — §:

|7 = ril|nm; < Bi(9)

e M;: design (covariance) matrix
e 8;(6): confidence bound (depends on §)
o This defines an ellipsoid around the true reward parameters.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling
Asymptotic consistency of DPS

o The posterior covariance matrix M~ ! shrinks with more
observations.
« Eigenvalues J; ; of the covariance matrix tend to zero:

llm )\i,j — 0
1—00
o This implies uncertainty in the reward parameters decreases over
time, which implies the reward parameters converge to the true
values.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Asymptotic consistency of DPS

Theorem 1: With probability 1 — §, the sampled policies m;1, 732
converge in distribution to the optimal policy 7* as © — oo.

e From Propositions 1 and 2, p;; 2) p and 7;1 £> r (with
probability 1 — 9)

e The reward function #;; converges in distribution to the true
reward parameters 7.

o For each fixed 7, the value function V(p;1, 71, ) converges in
distribution to V(p, r, 7) as value functions are continuous in the
dynamics and reward parameters.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Asymptotic consistency of DPS

 Applying Fact 2 (Appendix A.5) in Novoseller et al. (2020), we
have:

P(|V(ﬁi1,’f;i1,ﬂ')—V(p,’l‘,ﬂ')|>€)—)O as 17— 00

This shows that the value of the sampled policies converges to that
of the optimal policy.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

Bound the one-sided regret under a fixed ;1 -distribution

« We adapt information-theoretic analysis from Russo and Van Roy
(2016) to incooperate preference feedback and state-transition
dynamics.

 The trade-off between exploration and exploitation is defined as:

Eil(y; — v:)?]
]Ii [7'('*, (7Tz'27 TilyTi29 L2 — Lil, yz)]

I =

Russo, D., & Van Roy, B. (2016). An information-theoretic analysis of Thompson sampling. Journal of Machine Learning Research,
17(68), 1-30.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.



A gtanford
I NRTTEIE:_%AELN CE
3. Dueling Posterior Sampling

Bound the one-sided regret under a fixed ;1 -distribution

Eil(y; — vi)]
]Ii [7'('*, (7Tz'27 Tily Ti2y L2 — Lil, yZ)]

I =

e Numerator: Squared instantaneous one-sided regret of policy ;2
(exploitation).

e Denominator: Information gained about the optimal policy 7*
(exploration).

Russo, D., & Van Roy, B. (2016). An information-theoretic analysis of Thompson sampling. Journal of Machine Learning Research,
17(68), 1-30.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

Bound the one-sided regret under a fixed 7;;-distribution

e Let N be the number of DPS iterations, and the total number of
actions taken by m; is T' = Nh.
» We can derive the regret of this setting as:

E[Regy(T)] = E[Regy(Nh)] = Z — Tjp)

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

Bound the one-sided regret under a fixed 7;;-distribution

e Thus, we can rewrite the regret with the assumption of zero-

mean noise as:

E[Regy(T)] = E

where y; = 7(1) = 7'

f—r (.’13: — .’Big)

Z (’FT(%? — xil) — ’FT(wig — le))
2

(v; — ¥s)

., is the expected utility of the trajectory ;.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.



Stanford
ARTIFICIAL
INTELLIGENCE

3. Dueling Posterior Sampling

Bound the one-sided regret under a fixed 7;;-distribution
When policy m;; is drawn from a fixed distribution:

» Apply information-theoretic regret analysis similar to Russo and
Van Roy (2016).
« Lemma 12 (Novoseller et al., 2020): If I'; < T for all iterations i:

E[Regy(T)] < /TH[*|N

where H|7*] is the entropy of the optimal policy 7#* and N is the
number of DPS iterations.

Russo, D., & Van Roy, B. (2016). An information-theoretic analysis of thompson sampling. Journal of Machine Learning Research,
17(68), 1-30.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Proof for information-theoretic regret bound

Proof for Lemma 12: The expression we are working with (before
applying Cauchy-Schwarz) is:

E [Regret(T,n"°)] <E [i \/Pt]lt[A*; (A, Yz, At)]

where I'; is some scaling factor, I;|A*; (A, Y3, A¢)] is the
information gain at time ¢, and the summation is taken over the
entire time horizon T..
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Proof for information-theoretic regret bound

The Cauchy-Schwarz inequality for sums states that for any
sequences a; and b;, we have:

(Ben) = (8) (5%)

Taking square roots on both sides, we get:

t=1

o) B
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Proof for information-theoretic regret bound

Now, applying this inequality to the expression for regret, we
associate a; with 4/T; and b; with /I;[A*; (4¢, Yz, A)].

Specifically, we write:

T
K ; \/I‘t]lt [A*, (At7 Y.ta At)]

as the product of two sequences:

S VT LA (A4, Y, A
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3. Dueling Posterior Sampling

Proof for information-theoretic regret bound

Applying Cauchy-Schwarz to this sum gives:

1) |:§T: \/Pt]lt[A*; (Az, Y, Ag)]

ET: ]It[A*a (At7 Y;‘,a At)] .

t=1

K

< \E |:tzT;Ft
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Proof for information-theoretic regret bound

1) |:§T: \/I‘tﬂt [A*; (Ag, Ve, A)]

ET: ]It [A*, (At7 Y;‘,a At)]

t=1

K

< \E |:tzT;Ft

e The first term Zle I'; represents the sum of the scaling factors
'y over time, which is usually related to the confidence intervals
or the uncertainty at each time step.

» The second term 3, I;[A*; (A4, Yz, Ay)] is the total information
gain across all T’ steps.
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3. Dueling Posterior Sampling

Proof for information-theoretic regret bound

Assuming I'; is bounded, say I'y < [ for all t, the bound becomes:

T
T.-T-F ZHt[A*, (AtaYtaAt)]

\

This step is where the bound on the regret is simplified using the
total information gain across the horizon T'. The bound scales with
VT, which reflects the growth of regret with time, but it is also
modulated by the total information gathered during the process.

E [Regret(T,n'°)] <
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Proof for information-theoretic regret bound

Let Z; = (A4, Y3, At). We can write the total information gain as:
E [Ht [A*, Zt]] = ]1 [A*, Zt|Z1, c oo Zt—l]a

and the total information gain across all T" steps is:

T
EY I, [A* Z] = Z]I(A* Zi\Z1, ..., Z41)
t=1

(_C) I[A*;(Z1,...,27)]

(@)
— H[A*] - H[A*|Z,,..., Zr] < H[A*

where (c¢) follows from the chain rule for mutual information, and
(d) follows fromthe non-negativity of entropy.
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3. Dueling Posterior Sampling

Proof for information-theoretic regret bound

Gathering all the pieces together, we have:

iﬂt[A*; (A¢, Yy, Ag)]

t=1

E [Regret(T,m°)] < ,|T-T-E

\

— /T -T-H[4"
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3. Dueling Posterior Sampling

Proof for information-theoretic regret bound

» Cauchy-Schwarz allows us to upper bound the sum of products
by splitting the terms into separate sums.

e The final bound on regret is proportional to /T, which is a
typical result in many regret analyses in bandit problems, and the
bound also involves the total information gain
Zle ]It [A*a (At7 lfta At)]

o The key intuition is that regret is controlled by how much
information is gained about the optimal action over time, and
Cauchy-Schwarz helps provide a more manageable form for this
relationship.
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Bound the one-sided regret under a fixed 7;;-distribution

e H[r*] < log|A®"|, where A is the number of discrete actions, S is
the number of discrete states, and A" represents the number of
deterministic policies.

o Substituting this bound into Lemma 12:

E[Reg,(T)] < \/I_‘ShN log A = \/I_‘ST log A

where Sh is the number of deterministic policies.

« Thus, we can observe that regret can be asymptotically upper-
bounded.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

Bound the one-sided regret under a fixed 7;;-distribution

e I'; can be asymptotically bounded: lim;_,o, I'; < %.
e Theorem 2: For the competing policy m;2, DPS achieves one-
sided Bayesian regret rate:

BlReg, (7)) < 5/ L84

Thus, with a finite set of S states, A actions, and T’ steps, the regret

of DPS in this case is bounded by S \/ AT 12°gA .

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Bound the one-sided regret under a
converging ;1 -distribution

o In this case, we consider the distribution of 7;; converges to a
fixed distribution over deterministic policies.
e Lemma 16: Mutual information convergence: If two random

D D
variables X,, —» X and Y,, — Y, their mutual information also
converges:

lim I[X,,Y,] =I[X,Y]

n—o00

o This is used to bound the one-sided regret for ;.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Bound the one-sided regret under a
converging ;1 -distribution
Proof Outline

e Key idea:

D D D
X, - Xand Y, — Y imply that (X,,Y,) — (X,Y).
e Let P,(z) — P(x) for each x € X, and similarly for Y and
(X,Y).
 Goal: Show that

lim H[Xn] — H[X]a JLI{}OH[YTL] — H[Y]

n—0o0

lim H[X,,Y,] = H[X,Y].

n—0o0

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

Bound the one-sided regret under a
converging m;1-distribution
¢ Mutual information formula:
I[X;Y] = H[X] + H[Y] — H[X, Y]

« H[X]: Entropy of X.

e H|Y]: Entropy of Y.
« H|X,Y]: Joint entropy of X and Y.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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‘ 3. Dueling Posterior Sampling

Bound the one-sided regret under a
converging m;1-distribution

o Definition of H(X) for discrete variables:

H[X] = -  P(xz)log P(x)

o Definition of H(X,):

H[Xn] = — )  Pu(z)log Po()

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Bound the one-sided regret under a
converging m;1-distribution

e Since P,(z) — P(x) forallz € X:
|P,(z) — P(x)| <9

e There exists N, € N such that Vn* > N,:
|Po-(z) — P(z)| = 0

e Thus, Vn > N:

| Pr(z) log Pr(z) — P(z)log P(z)| < €

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Bound the one-sided regret under a
converging m;1-distribution

 From the previous bounds, we derive:

H(X) - H(Xn)| = | Y (P(2)log P(z) — Pu(z)log Py(z))

reX

<Y e=¢lx|=¢

reX

o Conclude that [H(X) — H(X,)| < e.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Bound the one-sided regret under a
converging ;1 -distribution

e By the same argument, we show that:

lim H[X,] = H[X]
n—o0
lim H[Y,] = H[Y]
n—o0
lim H[X,,Y,] = H[X,Y]
n—00

e Thus, we conclude Lemma 16:
lim 1[X,;Y,] =1[X;Y]
n—oo

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Bound the one-sided regret under a
converging ;1 -distribution

Lemma 17: If 7;; is drawn from a fixed distribution, then
asymptotically I' ;.. fixed < S—zA. Assuming that 7;; is drawn from a
distribution that is drifting and converging to a fixed probability
distribution. The information ratio I'; for m;2’s one-sided regret
satisfies:

A
]-im PZ S I‘ﬂ'i]_ fixed S ST

2—00

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

Bound the one-sided regret under a
converging m;1-distribution
Recall the definition of the information ratio I';:

Eil(y; — vi)?]

I'; =
' I;[7*; (72, Ti1, Ti2, Ti2 — Xit, Yi)]

» By Lemma 16, the denominator converges to the value it would
have under the fixed distribution to which ;; converges.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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3. Dueling Posterior Sampling

Bound the one-sided regret under a
converging m;1-distribution

e Numerator is the square of the expected instantaneous one-sided
regret:

E [FT(:E;“ — Z;2) "Hz@)] 2

This term is not dependent on x;;, so it remains unaffected by the
distribution of ;7.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Bound the one-sided regret under a
converging m;1-distribution
e Thus, we can conclude that:

: : SA
ImI'; < lm Iz, fixed < —— + €
1—00 1—00 2
This means that for any € > 0, there exists an iteration o such that
for all ¢ > 7, the lim;_,, I'; is asymptotically bounded by %.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Asymptotic Regret Rate

Recall Theorem 1, Theorem 2, and Lemma 17:

e Theorem 1: With probability 1 — 9, the sampled policies 7;1, 732
converge in distribution to the optimal policy 7* as i — oo.

e Theorem 2: If the policy m;; is drawn from a fixed distribution,
the one-sided Bayesian regret rate for ;5 is bounded by

ATlog A
Sy ATloeA.
« Lemma 17: If the sampling distribution of 7;; is converging to a
fixed distribution, then the information ratio I'; for m;2’s one-

sided regret is bounded by %.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Asymptotic Regret Rate

Theorem 3: With probability 1 — §, the expected Bayesian regret
E[Reg(T)] of DPS achieves an asymptotic rate:

E[Reg(T)

ZZPO ) [2Vi1(8) = Vi1 (8) — Vir (8)]

1=1 se8
= E[Reg;(T)] + E[Regy(T)]

:S\/ATlogA _|_S\/ATlogA _ §\/2ATTog A

2 2

» We now can conclude that the DPS algorithm is asymptotically
optimal in terms of Bayesian regret.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Empirical performance of DPS: Each simulated environment is shown under the two least-noisy
user preference models that were evaluated. The plots show DPS with three models: Gaussian
process regression (GPR), Bayesian linear regression, and a Gaussian process preference model.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Plots display the mean +/- one standard deviation over 100 runs of each algorithm tested. Overall,

we see that DPS performs well and is robust to the choice of credit assignment model.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., & Burdick, J. (2020, August). Dueling posterior sampling for preference-based reinforcement
learning. In Conference on Uncertainty in Artificial Intelligence (pp. 1029-1038). PMLR.
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Summary

e The dueling bandit problem is a variant of the multi-armed
bandit problem where the learner receives pairwise comparisons
between arms.

o Several algorithms have been proposed to solve the dueling
bandit problem, such as e-greedy, UCB, and Thompson sampling.

o In the case of contextual dueling bandits, the learner receives
context information along with the pairwise comparisons.

e The DPS algorithm is a preference-based reinforcement learning
algorithm capable of solving contextual bandits that use Bayesian
linear regression to model the utility function and Thompson
sampling to select policies.

e The DPS algorithm is asymptotically optimal in terms of
Bayesian regret.
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Discussion and Q&A

Next Lecture:

Preferential Bayesian Optimization



