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1. Preliminary
Which looks more like fire? Left or Right?

looks more like fi ft
[1] or Right [2]?

.-~

Astudillo, R, Lin, Z. ., Bakshy, E., & Frazier, P. (2023, April). gEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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1. Preliminary

Let X € R?Dbe a set of points and g : X — R be a black-box
function. Our objective is to find

Zumin = arg min g(z)

where g is not directly accessible, and queries can only be
performed in pairs of points, referred to as duels [z,2'] € X x X.

The feedback is binary y € {0, 1}. y = 1 if z is preferred (lower
value) and y = 0 otherwise. The goal is to find i, with the
minimal number of query.

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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1. Preliminary
Recall

p(z - z') = o(r(z') — r(z))

where 7(-) and o(+) is the latent reward function and sigmoid
function, respectively. We want to find & that can minimize g(+), so
that r(z) = —g(z). Hence, p(z > x') = a(g(xz) — g(z)).

For any duel [z, |, we have

p(z - z') > 0.5 < g(z) < g(z')

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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1. Preliminary: Copeland score

The Copeland score is used to measure how often an option wins in
pairwise comparisons against others. The normalized Copeland
score is defined as:

S(z) = Vol(x)™! /X I(g(z) < g(2'))da’

where Vol(X) normalizes the score to [0, 1].

Zoghi, M., Karnin, Z. S., Whiteson, S., & De Rijke, M. (2015). Copeland dueling bandits. Advances in neural information processing
systems, 28.
Nurmi, H. (1983). Voting procedures: a summary analysis. British Journal of Political Science, 13(2), 181-208.
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1. Preliminary: Copeland score

The normalized Copeland score is not smooth nor differentiable,
motivating the soft version of it:

O(x) o /X o(9(e") — g(z))da’ = /X p(z = 2)de’

o If ¢ is preferred to all other points (i.e. Condorcet winner), then
C(z¢) = 1, which is maximized.

o This implies that by observing the results of a set of duels, we can
solve the original optimization problem by finding Condorcet
winner of Copeland score.

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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Figure 1. Illustration of the key elements of an optimization problem with pairwise preferential returns in a one-dimensional example.
Top-left: Objective (Forrester) function to minimize. This function is only accessible through pairwise comparisons of inputs x and
x'. Right: true preference function 7¢([x, x']) that represents the probability that x will win a duel over x'. Note that, by symmetry,
m#([x,x']) =1 — w¢([x', x]). Bottom left: The normalised Copeland’s and soft-Copeland function whose maximum is located at the
same point of the minimum of f.

Gonzélez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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2. Learning Latent Score Function

o For convenience, we rewrite p(z > «') as 7([x, z]). We have
already observed IN duels in
D = {([wla wi]a y1)7 SRR ([wNa wg\/']ayN)}
« We want to learn ([, ]) so that for new coming duels [z, x}],
we can predict y;. The process of learning can be summarized as:
= Compute the posterior distribution p( f;|D, [z¢, x}], §), where
fi = g(x;) — g(x4), 6 is learning parameters.
= Compute the preference score

w([z¢, zi]; D, 0) = f lo(ft)p(ft|D, [z1, x4], 0)]d f:.

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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2. Learning Latent Score Function

The soft Copeland score can be obtained by integrating the
preference score over all possible duels. Thus, it is possible to learn
this function from data by integrating n(|z, '], D). We can use
Monte Carlo sampling to approximate the integral:

C(a:;D,H)oc/Xw([a: z']; D, 0)d —Zw(w z;]; D, 6)

The Condorcet winner is a maximizer of the soft Copeland score
found by any suitable optimizer: x¢ = arg max,cx C(x; D, 6)

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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A Gaussian distribution (i.e. normal distribution) is a continuous
probability distribution that is completely described with two
parameters (mean p and variance o) with the following density:

flalm o) = ——ep (- 21 )

2

4 3 2 10 1 2 3 r
X-axis
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2. Learning Latent Score Function:
Probability 101

A multivariate Gaussian distribution is a generalization of the one-
dimensional Gaussian distribution to higher dimensions by
defining a mean vector y and a covariance matrix .

011 012 *** O14d

021 022 -+ O34
—

041 O0d2 - 044

where 0; ; = (z; — pi)(x; — p;) is the covariance between
dimensions 2 and 7.
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2. Learning Latent Score Function:
Probability 101
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2. Learning Latent Score Function:
Probability 101

» Marginalization is a process of obtaining the probability
distribution of a subset of random variables from a joint
probability distribution.

o For example, given a joint distribution P(X,Y’), the marginal
distribution of X is obtained by summing over all possible values
of Y:

P(X) =) P(X,Y)
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2. Learning Latent Score Function:
Probability 101

Example: Given a joint distribution P(X,Y) as follows:

x|v]|PX,Y)
o[o| o1
01| 02
10| 03
11| o4

Compute the marginal distribution of X?
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2. Learning Latent Score Function:

Probability 101
X[Y[PXY)
oo o1
01| 02
10| 03
11| o4

The marginal distribution of X is obtained by summing over all
possible values of Y

B C (01402=03 ifX=0
P(X)—;P(X’Y)_{0.3+0.4=0.7 ifX =1
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2. Learning Latent Score Function:
Probability 101

» Conditioning is a process of obtaining the probability
distribution of a random variable given the value of another
random variable.

 For example, given a joint distribution P(X,Y’), the conditional
distribution of X given Y is obtained by dividing the joint
distribution by the marginal distribution of Y

P(X,Y)

P(XIY) = 545
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2. Learning Latent Score Function:
Probability 101

Example: Given a joint distribution P(X,Y) as follows:

x|v]|PX,Y)
o[o| o1
01| 02
10| 03
11| o4

Compute the conditional distribution of X givenY = 1?
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2. Learning Latent Score Function:
Probability 101

The conditional distribution of X given Y = 1 is obtained by

dividing the joint distribution by the marginal distribution of
Y =1

PXly=1)= -
(X1 )="p s =067 fX=1

P(X,Y = 1) {% =033 fX=0
0.2+0.4
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3. Learning Latent Score Function

When learning a function f(z) without knowing its functional
form, we tycally have two modeling choice:

o Assume a parametric form for f(z), e.g., f(z) = 0 + 01z + G222
and estimate the parameters 6 (by using Maximum Likelihood
Estimation, for example).

o Assume a nonparametric form for f(x), e.g.,

f(z) ~ GP(u(x), k(z,z")), where u(z) is the mean function and
k(xz,z') is the kernel function.



A'gtanford
I NRTTEIE:_%AELN CE
3. Learning Latent Score Function: GP

« Gaussian process (GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution. GP
learns the underlying distribution of the function f(x) from
training data by modeling the training data Yirain and test data
Y.t as a multivariate normal distribution.

e The mean function y is often assumed to be 0, simplifying the
conditioning process. This can later be adjusted by adding u back
during prediction (a process known as centering).

e The covariance matrix X defines the relationship between data
points, and it is computed using a kernel function k(z, z'). The
kernel function is crucial as it determines the smoothness of the
function class.
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3. Learning Latent Score Function: GP

The covariance matrix ¥ is computed by applying the kernel
function k(t,t’) to each pair of data points:

k:R"xR" - R, X =Cov(X,X') =kt

o Stationary Kernels: Depend only on the relative position of data
points. Examples: RBF (Invariant to translation, covariance
decays with distance), Periodic (Adds periodicity, controlled by a
parameter P)

« Non-stationary Kernels: Depend on the absolute position.
Example: Linear (Sensitive to the location of points)

« Combining Kernels
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3. Learning Latent Score Function: GP

RBF KERNEL PERIODIC LINEAR

o2 exp (_ ||t;£t2’||2) o exp( 251n2(7r|t t|/p)) 62 + 02t — ¢)(t' — ¢)
W-

https:/ / distill.pub /2019 / visual-exploration-gaussian-processes /
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3. Learning Latent Score Function: GP

e Prior Distribution describes the probability of possible functions
before observing any training data.

e The covariance matrix of the prior is set up using the kernel
function, which determines the types of functions that are more
probable within the prior.

» We provide samples from different kernels to highlight how
functions are distributed normally around the mean.
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3. Learning Latent Score Function: GP
RBF Kernel

© RBF - Periodic - Linear

Varianceg = 0.8

Length | =0.8

https:/ / distill.pub /2019 / visual-exploration-gaussian-processes /
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3. Learning Latent Score Function: GP

Periodic Kernel

RBF @ Periodic < Linear

Variancec = 0.9

—

Length | = 0.51

Periodicity p = 0.31

https:/ / distill.pub /2019 / visual-exploration-gaussian-processes /
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3. Learning Latent Score Function: GP

Linear Kernel

RBF ~ Periodic © Linear

=0 —
- = #{ = ——] Variance o =015
H=c c o il _
Variance o_t = 0.1
Offset ¢ =2

https:/ / distill.pub /2019 / visual-exploration-gaussian-processes /
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3. Learning Latent Score Function: GP

Analytical Inference: In case the likelihood is Gaussian, the
posterior is also Gaussian, and the exact inference can be done as
described earlier. For non-Gaussian likelihoods, the posterior is not
Gaussian, and exact inference is intractable (i.e., having no closed-
form solution).

Numerical Inference: Variational Inference (approximate) or
Markov Chain Monte Carlo (asymptotic exact).
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3. Learning Latent Score Function: GP

Let us consider a simple example of Gaussian Process binary
classification. We have a dataset D = {(x1,v1),..., (xN,yN)},
where z; € R% and y; € {—1, +1}. We use Bernoulli distribution to
model the data. With a latent function f(x), the likelihood is given

by:
p(yilz:) = o(yi - f(x:))

where o(-) is the sigmoid function.
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3. Learning Latent Score Function: GP

We first present the Elliptical Slice Sampling (ESS) algorithm for
sampling from the posterior distribution of the latent function f(x).

o Let the prior distribution of f(z) be a Gaussian Process with zero
mean and covariance matrix K: p(f) = N(f;0, K), where
K =K(X, X).

e Step 1: Initializing the latent function £ ~ AN(0, K).

e Step 2: Sampling an auxiliary variable v ~ N (0, K).

e Step 3: Computing likelihood threshold with u ~ 4(0,1).

log m(£®) = log p(y| £ ") + logu

Murray, I., Adams, R., & MacKay, D. (2010, March). Elliptical slice sampling. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics (pp. 541-548). JMLR Workshop and Conference Proceedings.
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3. Learning Latent Score Function: GP

e Step 3: Drawing a random angle § ~ Uniform(0, 27), and
compute the next latent function:

FHY = £® cos() + vsin(h)

o Step 4: Evaluating the likelihood:

N
log p(y| F*) = "loga(y; - £ (;))

1=1

e Step 5: If log p(y|f**Y) > log w(f¥)), accept the sample f¢+D)
and return to Step 2. Otherwise, go to Step 6.

Murray, I., Adams, R., & MacKay, D. (2010, March). Elliptical slice sampling. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics (pp. 541-548). JMLR Workshop and Conference Proceedings.
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3. Learning Latent Score Function: GP

o Step 6: Shrinking the bracket of 6:
» [f0 <0, setOp;, = 0.
n [f0 >0, set O = 6.
o Step 7: Resampling 6 from the interval [@uyin, Omax] and return to
Step 3.

Murray, I., Adams, R., & MacKay, D. (2010, March). Elliptical slice sampling. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics (pp. 541-548). JMLR Workshop and Conference Proceedings.
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3. Learning Latent Score Function: GP

e There are multiple methods for approximate inference in
Gaussian Processes, such as Laplace Approximation (LA),
Expectation Propagation (EP), Variational Bound (VB), or KL-
divergence minimization (KL).

 Here is the comparison of some approximate inference methods
in posterior approximation:

best Gaussian posterior, KL=0.118 LA posterior, KL=0.557 EF posterior, KL=0.118 VB posterior, KL=3.546 KL posterior, KL=0.161
5 5 5 5 5
0 0 0 0 0
-5 -5 -5 k / 5 -5
-10 -10 -10 [ -10 -10
-5 0 5 10 5 0 5 10 5 0 5 10 5 0 5 10 5 0 5 10

Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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3. Learning Latent Score Function: GP

« Here is the comparison of some approximate inference methods
in likelihood approximation:

best Gaussian likelihood LA likelihood EP likelihood VB likelihood KL likelihood
5 5 5 5 5
0 0 0 0 0
-5 -5 -5 -5 -5
—10 -10 -10 -10 —10
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10

« We can observe that the Expectation Propagation (EP) method
provides the best approximation for the likelihood.

Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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3. Learning Latent Score Function: GP

» Expectation Propagation (EP) is an iterative method to find
approximations based on approximate marginal moments.

o The individual likelihood terms are replaced by site functions
t;(f;) being unnormalized Gaussians

P(yilf:) = ti(fi, piy 03, Zi) = ZiN (filpi, 07)

where p;, 02, and Z; will be iteratively optimized.

Minka, T. P. (2013). Expectation propagation for approximate Bayesian inference. arXiv preprint arXiv:1301.2294.
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3. Learning Latent Score Function: GP

o The posterior approximation is given by:
p(fID) = N (flm, (K™ + W) ™)

where W = [0, %]sand m = [ — K(K + W) KWp.

e The o7 is an element of the diagonal of the covariance matrix K.
e The i is the mean vector of the Gaussian Process.

Minka, T. P. (2013). Expectation propagation for approximate Bayesian inference. arXiv preprint arXiv:1301.2294.
Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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3. Learning Latent Score Function: GP

e The likelihood approximation is given by:

log(p(y|z)) = log / p(l)p(f|z)df
=1

- 1
— ZlogZz- - E,uT(K—I— wHu
i—1

1
— Elog K+ W™ — %10g27r

Minka, T. P. (2013). Expectation propagation for approximate Bayesian inference. arXiv preprint arXiv:1301.2294.
Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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4. Policy for PBO

o In practice, the new duels are queried sequentially. Thus, it may
be very expensive if we do not have a good acquistion strategy,

as we need to explore a lot of duels before finding the Condorcet
winner.

o To address this issue, we can formulate this problem as an active
preference learning problem, where we can customize the
acquisition function to balance between exploration and

exploitation, helping to find the Condorcet winner with fewer
duels.
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4. Policy for PBO

In this lecture, we will explore three acquisition functions which
can be used to find the Condorcet winner:

e Pure exploration
« Copeland Expected Improvement
e Dueling-Thompson sampling

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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Pure Exploration

o The goal of pure exploration is to find the duel of which the
preference score is the most uncertain (highest variance).

» We can qualify the uncertainty of the preference score by
computing the variance of it:

Vio(fller, D) = [ (o(5) ~ Elo() PP, far, 1) 0
— [ o p(£1D, [a1, 22, )ds: ~ Elo(£)
In practice, we can approximate the variance by using Monte-Carlo

sampling.

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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Copeland Expected Improvement

o The idea of Expected Improvement is to find the duels that have
a higher preference score than the current best one.

» We denote ¢} = C(x; Dy, 0) is the estimated Condorcer winner
resulting from Dy = D U {[xy, x;], 1}.

« We also denote ¢, = C(z'; Dy, 0) is the estimated Condorcer
winner resulting from D; = D U {[z, x;],0}.

e The Copeland Expected Improvement is defined as:

ACEI([«’Bt, .’L’;HD, 9) — 7'('([.’13, :LJ“Dta 0)(6:3 - C*)
+ m([z', z]| Dy, 6) (c — )

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO

Dueling-Thompson Sampling

» The above two acquisition functions have some limitations:
= Pure exploration is too explorative and does not exploit the
knowledge about the current best location.
= Copeland Expected Improvement is over-exploitative and
expensive to compute.

e« Thompson sampling can be used to balance between exploration
and exploitation. The idea is to sample the preference score from
the posterior distribution and select the duel with the highest
preference score.

Gonzélez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO

Dueling-Thompson Sampling

Step 1 (Selecting z;): At first, we sample an £ from the model using
continuous Thompson sampling and compute the soft Copeland
score as:

Ty = argmax/ [z, 2']; D, §)dz’
zeX X

where ﬂ'f([mta z4]; D, 0) = fo'(ft)p(f”Da @, 3, H)dft-

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO

Dueling-Thompson Sampling

Step 2 (Selecting x'): Given x4, the x} is selected to maximize the
variance of o( f;) in the direction of x;:

zy = argmax V[o(f)|[z¢, 2¢]|D, 6]

Finally, the selected duel [z, x}] is queried, and the process is
repeated until the Condorcet winner is found.

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO

Dueling-Thompson Sampling

Sample of o( f.)
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0.0
F;gure =S ]]]ustr.iuon of the stcps to propose a new duel using the duelling-Thompson acqulsluon. 'I'he duel is computed u&.lng the same

model as in Figure 2. The white triangle represents the final selected duel. Left: Sample from f, squashed through the logistic function o
Center: Sampled soft-Copeland function, which results from integrating the the sample from o ( f.) on the left across the vertical axis.
The first element of the duel x is selected as the location of the maximum of the sampled soft-Copeland function (vertical dotted line).
Right: The second element of the duel, x’, is selected by maximizing the variance of o ( f.) marginally given x (maximum across the

vertical dotted line).

Sampled Copeland Function

0.3

0.71
0.8

0.61
0.6 0.5

0.41
0.4

0.31
0.2 gz

0.1

0.2 0.4 0.6 0.8

Variance of o f,)

1.0
0.8
.6
0.4
0.2
0. ﬂ

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO

Dueling-Thompson Sampling

100 Copeland Samples (#duels = 10) 100 Copeland Samples (#duels = 30) 100 Copeland Samples (#duels =

150)

0.0 T T T T 0.0 T T T ' 0.0 0.2 0.4 0.6 08 1.0

100 continuous samples of the Copeland score function (grey) in the Forrester example
were generated using Thompson sampling. The three plots show the samples obtained
once the model has been trained with different numbers of duels (10, 30, and 150). In
black, we show the Coplenad function computed using the preference function. The more
samples are available more exploitation is encouraged in the first element of the duel as
the probability of selecting x; as the true optimum increases.

Gonzdlez, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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5. Decision-Theoretic Acquisition Function

We restart with a more general problem where we have a set of
more-than-2 points to get the preference feedback.

e Let us denote X = (z1,...,2z,) € X?is a query containing g
points and g(-) is the latent function.

o Starting with the one-step Bayes optimal policy, we define the
expected utility received after querying X € X7 as:

Vi(X) = Eq Ifea%Et—l—l[g(w)HXt—l—l =X

Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). gEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function

The goal is to find X that maximizes the expected utility V;(X).

X, = arg max Vi(X)

Since max ey Ety1[g9(x)] is not dependent on X, we can rewrite
the expected utility as:

Vi(X) = Er |maxEcalo(o)]| Xea = X

cX cX

x E; -IilaX E¢r1]g(x)] — max Eilg(x)]| X1 = X]

Astudillo, R, Lin, Z. ., Bakshy, E., & Frazier, P. (2023, April). gEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.



A

Stanford
ARTIFICIAL

INTELLIGENCE

5. Decision-Theoretic Acquisition Function
We define the expected utility of the best option (JEUBO) as:

AqEUBO,t(X) = E [{g(z1),--. ,g(wq)}]

According to Theorem 1 in (Astudillo et al., 2023), we have:

C
arg max A,rvBo+(X) C arg max V; Vi(X)

Thus, optimizing the expected utility of the query is sufficient to
find the optimal query (i.e., maximize the A,guBo.t)-

Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). gEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function

Theorem 1:

o Suppose the actor responses are noise-free.
e Then argmaxxcy: Agruo+(X) C argmax xcyq Vi (X)

Proof Outline:

l.Foreach X € Xand i € {1,...,q}, define X(X) = 27 (X, 1),
where (X, 1) = arg max,cy E:[g(z) | (X, )]
2. Show that: Vi(X) < A guso+(X (X))
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Proof of Theorem 1

For any given X € X and eachi € {1,...,q},
let 1 (X, 1) € argmax,cy E¢g(z) | (X,7)],
and define X 7(X) = (z*(X,1),...,z7(X,q)).

We claim that:

Vi(X) < Agpupos(X (X))
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Proof of Theorem 1

To see this, we denote 7(X) € {1,...,q} as the index of the
component of X 7 (X) that maximizes the expected utility of the
best option:

q

Vi(X) = 2_: Py(r(X) = i)Eqy[g(z™ (X, 1))[(X, )]

< S OPAr() = B | max gl (X,0) | (X,)

1 i=1,...,q

= E; [ max g(z" (X, Z))] = AevBos(X (X))

1=1,...,q9
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Proof of Theorem 1

On the other hand, for any given X € X9, we have:
Et|g(zr(x))| (X, r(X))] < max Byg(z)[(X, r(X))].

Since g(Z,(x)) = max;—1, .. q9(%;), taking expectations over r(X)
on both sides, we obtain:

A ruBot(X) < Vi(X).
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Proof of Theorem 1

Now, building on the arguments above, let
X* € argmaxxexy Ageupo,(X) and suppose for the sake of
contradiction that X* ¢ arg max xcy V;(X).

Then, there exists X € X such that V;(X) > V;(X*). By the

arguments above, we have:
Arupo (X 1T(X)) > Vi(X) > Vi(X™) > Agrupor(X* (X)),

which contradicts the assumption. Therefore, the claim holds.
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Proof of Theorem 1

The first inequality follows from (1). The second inequality is due
to our supposition for contradiction. The third inequality is due to
(2). Finally, the fourth inequality holds since

X* € argmaxxcy AqEUBO,t(X)-

This contradiction concludes the proof.
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In case there are noises in the actor responses, maximizing AqEUBO,t
is not equivalent to maximizing V;. However, if the noises in
responses follow the logistic likelihood function L(g(x); A) with
noise level parameter A, gEU BO can still be highly effective. Each
component in L(g(x); A) is a logistic function defined as follows.

exp(g(z:)/A)
> i1 exp(g(z;)/A)

Li(g(z); A) =
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We denote V; as V; to make its dependence on A explicit. If
X* € argmaxxecx Agupo(X), then we have Theorem 2 as:
VA(X™) > max V,°(X) — AC,
XeX

where C = Ly ((q — 1)/e), and Ly is the Lambert W function
(Corless et al., 1996).

Corless, R. M., Gonnet, G. H., Hare, D. E,, Jeffrey, D. J., & Knuth, D. E. (1996). On the Lambert W function. Advances in Computational
mathematics, 5, 329-359.
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Proof of Theorem 2

Lemma 1: For any sy,...,8, € R,

q I\
Z leP(Sz/ ) s; > max s; — AC,
= >.j—1exp(s;/A) i=1,.. .

where C = Ly ((q — 1)/e), where Ly is the Lambert W function
(Corless et al., 1996).

Corless, R. M., Gonnet, G. H., Hare, D. E,, Jeffrey, D. ]., & Knuth, D. E. (1996). On the Lambert W function. Advances in Computational
mathematics, 5, 329-359.

Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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Proof of Theorem 2

Proof of Lemma 1 We may assume without loss of generality that
max;_i ... q8; = Sq. Lett; = (s — s;)/Afori € {1,...,q—1}.
After some algebra, we see that the inequality we want to show is
equivalent to

§ t; exp(—t;) oy
1"‘2 1exp( t;)

Astudillo, R, Lin, Z.J., Bakshy, E., & Frazier, P. (2023, April). gEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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Proof of Theorem 2

Proof of Lemma 1 (cont) Thus, it suffices to show that the function
n:[0,00)9" ! — R given by

is bounded above by C.

Viappiani, P. and Boutilier, C. (2010). Optimal Bayesian recommendation sets and myopically optimal choice query sets. Advances in
Neural Information Processing Systems, 23.

Astudillo, R, Lin, Z.J., Bakshy, E., & Frazier, P. (2023, April). gEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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Proof of Theorem 2
Lemma 2: E} [g(z,(x))] > Agevpos(X) — AC forall X € X.

Note that

S _elo@)/N)

= 2. j-1exp(g(x;)/A)

E}Mg(z.(x))|9(z)] =

Thus, Lemma 1 implies that

Eg(xrx))lg(z)] > max g(zi) — AC.

Z: ,ooo,q

Taking expectations over both sides of the inequality yields the
desired result.
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Lemma 3: VN (X) > E}[g(zr(x))] forall X € X.

Observe that

VA (X) = B} |max Elg(2)|(X, (X))
> E}Elg(z.x)) (X, r(X))]]
— EtA [g(fﬂr(X))]

where the penultimate equality is followed by the law of iterated
expectation.
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Recall the Theorem 2, if we have X* € argmax xcx« AevBo:(X),
then:

VAX*) > max V,'(X) — \C
XeX1

Proof for Theorem 2 Let X** € arg max xcx« V,’(X). We have the
following chain of inequalities:

VAX*) > Eg(zrxv))]
> E7[g(z,(x)] — AC
= Aot (X*) — AC > Agguo+(X™) — AC

> V2(X*™) — A\C = max V,*(X) — \C.
XekX
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o The first inequality follows from Lemma 3.

o The second inequality follows from Lemma 2.

o The third line (first equality) follows from the definition of
AqBUBO -

o The fourth line (third inequality) follows from the definition of
X*.

o The fifth line (fourth inequality) can be obtained as in the proof
of Theorem 1.

o Finally, the last line (second equality) follows from the definition
of X**.
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Astudillo, R, Lin, Z.J., Bakshy, E., & Frazier, P. (2023, April). gEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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Summary

e In this lecture, we have learned about Preferential Bayesian
Optimization, a method for optimizing black-box functions using
preference feedback.

» We have discussed the Gaussian Process regression, which is
used to model the underlying distribution of the function.

» We have also explored different acquisition functions, including
Pure Exploration, Copeland Expected Improvement, and
Dueling-Thompson Sampling, to find the Condorcet winner.

o Finally, we have introduced the gEUBO, which aims to maximize
the expected utility of the query.



Discussion and Q&A

Next lecture:

Aggregated Preference Optimization via
Mechanism Design



