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1. Preliminary
Which looks more like fire? Left or Right?

 
Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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1. Preliminary
Let  be a set of points and  be a black-box
function. Our objective is to find

where  is not directly accessible, and queries can only be
performed in pairs of points, referred to as duels .

The feedback is binary .  if  is preferred (lower
value) and  otherwise. The goal is to find  with the
minimal number of query.
González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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1. Preliminary
Recall

where  and  is the latent reward function and sigmoid
function, respectively. We want to find  that can minimize , so
that . Hence, .

For any duel , we have

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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1. Preliminary: Copeland score
The Copeland score is used to measure how often an option wins in
pairwise comparisons against others. The normalized Copeland
score is defined as:

where  normalizes the score to .
Zoghi, M., Karnin, Z. S., Whiteson, S., & De Rijke, M. (2015). Copeland dueling bandits. Advances in neural information processing
systems, 28.
Nurmi, H. (1983). Voting procedures: a summary analysis. British Journal of Political Science, 13(2), 181-208.
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1. Preliminary: Copeland score
The normalized Copeland score is not smooth nor differentiable,
motivating the soft version of it:

If  is preferred to all other points (i.e. Condorcet winner), then
, which is maximized.

This implies that by observing the results of a set of duels, we can
solve the original optimization problem by finding Condorcet
winner of Copeland score.

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.

6



1. Preliminary

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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2. Learning Latent Score Function
For convenience, we rewrite  as . We have
already observed  duels in

.
We want to learn  so that for new coming duels ,
we can predict . The process of learning can be summarized as:

Compute the posterior distribution , where
,  is learning parameters.

Compute the preference score
.

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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2. Learning Latent Score Function
The soft Copeland score can be obtained by integrating the
preference score over all possible duels. Thus, it is possible to learn
this function from data by integrating . We can use
Monte Carlo sampling to approximate the integral:

The Condorcet winner is a maximizer of the soft Copeland score
found by any suitable optimizer: 
González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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2. Learning Latent Score Function:
Probability 101

A Gaussian distribution (i.e. normal distribution) is a continuous
probability distribution that is completely described with two
parameters (mean  and variance ) with the following density:
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2. Learning Latent Score Function:
Probability 101

A multivariate Gaussian distribution is a generalization of the one-
dimensional Gaussian distribution to higher dimensions by
defining a mean vector  and a covariance matrix .

where  is the covariance between
dimensions  and .
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2. Learning Latent Score Function:
Probability 101
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2. Learning Latent Score Function:
Probability 101

Marginalization is a process of obtaining the probability
distribution of a subset of random variables from a joint
probability distribution.
For example, given a joint distribution , the marginal
distribution of  is obtained by summing over all possible values
of :
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2. Learning Latent Score Function:
Probability 101

Example: Given a joint distribution  as follows:

Compute the marginal distribution of ?
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2. Learning Latent Score Function:
Probability 101

The marginal distribution of  is obtained by summing over all
possible values of :
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2. Learning Latent Score Function:
Probability 101

Conditioning is a process of obtaining the probability
distribution of a random variable given the value of another
random variable.
For example, given a joint distribution , the conditional
distribution of  given  is obtained by dividing the joint
distribution by the marginal distribution of :

16



2. Learning Latent Score Function:
Probability 101

Example: Given a joint distribution  as follows:

Compute the conditional distribution of  given ?
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2. Learning Latent Score Function:
Probability 101

The conditional distribution of  given  is obtained by
dividing the joint distribution by the marginal distribution of

:
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3. Learning Latent Score Function
When learning a function  without knowing its functional
form, we tycally have two modeling choice:

Assume a parametric form for , e.g., 
and estimate the parameters  (by using Maximum Likelihood
Estimation, for example).
Assume a nonparametric form for , e.g.,

, where  is the mean function and
 is the kernel function.
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3. Learning Latent Score Function: GP
Gaussian process (GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution. GP
learns the underlying distribution of the function  from
training data by modeling the training data  and test data

 as a multivariate normal distribution.
The mean function  is often assumed to be 0, simplifying the
conditioning process. This can later be adjusted by adding  back
during prediction (a process known as centering).
The covariance matrix  defines the relationship between data
points, and it is computed using a kernel function . The
kernel function is crucial as it determines the smoothness of the
function class.
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3. Learning Latent Score Function: GP
The covariance matrix  is computed by applying the kernel
function  to each pair of data points:

Stationary Kernels: Depend only on the relative position of data
points. Examples: RBF (Invariant to translation, covariance
decays with distance), Periodic (Adds periodicity, controlled by a
parameter )
Non-stationary Kernels: Depend on the absolute position.
Example: Linear (Sensitive to the location of points)
Combining Kernels
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3. Learning Latent Score Function: GP

https://distill.pub/2019/visual-exploration-gaussian-processes/
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3. Learning Latent Score Function: GP
Prior Distribution describes the probability of possible functions
before observing any training data.
The covariance matrix of the prior is set up using the kernel
function, which determines the types of functions that are more
probable within the prior.
We provide samples from different kernels to highlight how
functions are distributed normally around the mean.
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3. Learning Latent Score Function: GP
RBF Kernel

https://distill.pub/2019/visual-exploration-gaussian-processes/
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3. Learning Latent Score Function: GP
Periodic Kernel

https://distill.pub/2019/visual-exploration-gaussian-processes/
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3. Learning Latent Score Function: GP
Linear Kernel

https://distill.pub/2019/visual-exploration-gaussian-processes/
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3. Learning Latent Score Function: GP
Analytical Inference: In case the likelihood is Gaussian, the
posterior is also Gaussian, and the exact inference can be done as
described earlier. For non-Gaussian likelihoods, the posterior is not
Gaussian, and exact inference is intractable (i.e., having no closed-
form solution).

Numerical Inference: Variational Inference (approximate) or
Markov Chain Monte Carlo (asymptotic exact).
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3. Learning Latent Score Function: GP
Let us consider a simple example of Gaussian Process binary
classification. We have a dataset ,
where  and . We use Bernoulli distribution to
model the data. With a latent function , the likelihood is given
by:

where  is the sigmoid function.
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3. Learning Latent Score Function: GP
We first present the Elliptical Slice Sampling (ESS) algorithm for
sampling from the posterior distribution of the latent function .

Let the prior distribution of  be a Gaussian Process with zero
mean and covariance matrix : , where

.
Step 1: Initializing the latent function .
Step 2: Sampling an auxiliary variable .
Step 3: Computing likelihood threshold with .

Murray, I., Adams, R., & MacKay, D. (2010, March). Elliptical slice sampling. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics (pp. 541-548). JMLR Workshop and Conference Proceedings.
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3. Learning Latent Score Function: GP
Step 3: Drawing a random angle , and
compute the next latent function:

Step 4: Evaluating the likelihood:

Step 5: If , accept the sample 
and return to Step 2. Otherwise, go to Step 6.

Murray, I., Adams, R., & MacKay, D. (2010, March). Elliptical slice sampling. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics (pp. 541-548). JMLR Workshop and Conference Proceedings.
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3. Learning Latent Score Function: GP
Step 6: Shrinking the bracket of :

If , set .
If , set .

Step 7: Resampling  from the interval  and return to
Step 3.

Murray, I., Adams, R., & MacKay, D. (2010, March). Elliptical slice sampling. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics (pp. 541-548). JMLR Workshop and Conference Proceedings.
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3. Learning Latent Score Function: GP
There are multiple methods for approximate inference in
Gaussian Processes, such as Laplace Approximation (LA),
Expectation Propagation (EP), Variational Bound (VB), or KL-
divergence minimization (KL).
Here is the comparison of some approximate inference methods
in posterior approximation:

Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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3. Learning Latent Score Function: GP
Here is the comparison of some approximate inference methods
in likelihood approximation:

We can observe that the Expectation Propagation (EP) method
provides the best approximation for the likelihood.

Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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3. Learning Latent Score Function: GP
Expectation Propagation (EP) is an iterative method to find
approximations based on approximate marginal moments.
The individual likelihood terms are replaced by site functions

 being unnormalized Gaussians

where , , and  will be iteratively optimized.
Minka, T. P. (2013). Expectation propagation for approximate Bayesian inference. arXiv preprint arXiv:1301.2294.
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3. Learning Latent Score Function: GP
The posterior approximation is given by:

where  and .

The  is an element of the diagonal of the covariance matrix .
The  is the mean vector of the Gaussian Process.

Minka, T. P. (2013). Expectation propagation for approximate Bayesian inference. arXiv preprint arXiv:1301.2294.
Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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3. Learning Latent Score Function: GP
The likelihood approximation is given by:

Minka, T. P. (2013). Expectation propagation for approximate Bayesian inference. arXiv preprint arXiv:1301.2294.
Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning
Research, 9(Oct), 2035-2078.
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4. Policy for PBO
In practice, the new duels are queried sequentially. Thus, it may
be very expensive if we do not have a good acquistion strategy,
as we need to explore a lot of duels before finding the Condorcet
winner.

To address this issue, we can formulate this problem as an active
preference learning problem, where we can customize the
acquisition function to balance between exploration and
exploitation, helping to find the Condorcet winner with fewer
duels.
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4. Policy for PBO
In this lecture, we will explore three acquisition functions which
can be used to find the Condorcet winner:

Pure exploration
Copeland Expected Improvement
Dueling-Thompson sampling

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO
Pure Exploration

The goal of pure exploration is to find the duel of which the
preference score is the most uncertain (highest variance).
We can qualify the uncertainty of the preference score by
computing the variance of it:

In practice, we can approximate the variance by using Monte-Carlo
sampling.
González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO
Copeland Expected Improvement

The idea of Expected Improvement is to find the duels that have
a higher preference score than the current best one.
We denote  is the estimated Condorcer winner
resulting from .
We also denote  is the estimated Condorcer
winner resulting from .
The Copeland Expected Improvement is defined as:

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO
Dueling-Thompson Sampling

The above two acquisition functions have some limitations:
Pure exploration is too explorative and does not exploit the
knowledge about the current best location.
Copeland Expected Improvement is over-exploitative and
expensive to compute.

Thompson sampling can be used to balance between exploration
and exploitation. The idea is to sample the preference score from
the posterior distribution and select the duel with the highest
preference score.

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO
Dueling-Thompson Sampling

Step 1 (Selecting ): At first, we sample an  from the model using
continuous Thompson sampling and compute the soft Copeland
score as:

where .
González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO
Dueling-Thompson Sampling

Step 2 (Selecting ): Given , the  is selected to maximize the
variance of  in the direction of :

Finally, the selected duel  is queried, and the process is
repeated until the Condorcet winner is found.
González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO
Dueling-Thompson Sampling

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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4. Policy for PBO
Dueling-Thompson Sampling

  
100 continuous samples of the Copeland score function (grey) in the Forrester example
were generated using Thompson sampling. The three plots show the samples obtained
once the model has been trained with different numbers of duels (10, 30, and 150). In
black, we show the Coplenad function computed using the preference function. The more
samples are available more exploitation is encouraged in the first element of the duel as
the probability of selecting  as the true optimum increases.

González, Javier, et al. "Preferential bayesian optimization." International Conference on Machine Learning. PMLR, 2017.
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5. Decision-Theoretic Acquisition Function
We restart with a more general problem where we have a set of
more-than-2 points to get the preference feedback.

Let us denote  is a query containing 
points and  is the latent function.
Starting with the one-step Bayes optimal policy, we define the
expected utility received after querying  as:

Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function
The goal is to find  that maximizes the expected utility .

Since  is not dependent on , we can rewrite
the expected utility as:

Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function
We define the expected utility of the best option (qEUBO) as:

According to Theorem 1 in (Astudillo et al., 2023), we have:

Thus, optimizing the expected utility of the query is sufficient to
find the optimal query (i.e., maximize the ).
Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function
Theorem 1:

Suppose the actor responses are noise-free.
Then 

Proof Outline:

1. For each  and , define ,
where .

2. Show that: 
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 1

For any given  and each ,
let ,
and define .

We claim that:
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 1

To see this, we denote  as the index of the
component of  that maximizes the expected utility of the
best option:
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 1

On the other hand, for any given , we have:

Since , taking expectations over 
on both sides, we obtain:
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 1

Now, building on the arguments above, let
 and suppose for the sake of

contradiction that .

Then, there exists  such that . By the
arguments above, we have:

which contradicts the assumption. Therefore, the claim holds.
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 1

The first inequality follows from . The second inequality is due
to our supposition for contradiction. The third inequality is due to

. Finally, the fourth inequality holds since
.

This contradiction concludes the proof.
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5. Decision-Theoretic Acquisition Function
In case there are noises in the actor responses, maximizing 
is not equivalent to maximizing . However, if the noises in
responses follow the logistic likelihood function  with
noise level parameter ,  can still be highly effective. Each
component in  is a logistic function defined as follows.
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5. Decision-Theoretic Acquisition Function
We denote  as  to make its dependence on  explicit. If

, then we have Theorem 2 as:

where , and  is the Lambert W function
(Corless et al., 1996).
Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., & Knuth, D. E. (1996). On the Lambert W function. Advances in Computational
mathematics, 5, 329-359.
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 2

Lemma 1: For any ,

where , where  is the Lambert W function
(Corless et al., 1996).
Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., & Knuth, D. E. (1996). On the Lambert W function. Advances in Computational
mathematics, 5, 329-359.
Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 2

Proof of Lemma 1 We may assume without loss of generality that
. Let  for .

After some algebra, we see that the inequality we want to show is
equivalent to

Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 2

Proof of Lemma 1 (cont) Thus, it suffices to show that the function
 given by

is bounded above by .
Viappiani, P. and Boutilier, C. (2010). Optimal Bayesian recommendation sets and myopically optimal choice query sets. Advances in
Neural Information Processing Systems, 23.
Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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5. Decision-Theoretic Acquisition Function
Proof of Theorem 2

Lemma 2:  for all .

Note that

Thus, Lemma 1 implies that

Taking expectations over both sides of the inequality yields the
desired result.
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5. Decision-Theoretic Acquisition Function
Lemma 3:  for all .

Observe that

where the penultimate equality is followed by the law of iterated
expectation.
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5. Decision-Theoretic Acquisition Function
Recall the Theorem 2, if we have ,
then:

Proof for Theorem 2 Let . We have the
following chain of inequalities:
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5. Decision-Theoretic Acquisition Function
The first inequality follows from Lemma 3.
The second inequality follows from Lemma 2.
The third line (first equality) follows from the definition of

.
The fourth line (third inequality) follows from the definition of

.
The fifth line (fourth inequality) can be obtained as in the proof
of Theorem 1.
Finally, the last line (second equality) follows from the definition
of .
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5. Decision-Theoretic Acquisition Function

Astudillo, R., Lin, Z. J., Bakshy, E., & Frazier, P. (2023, April). qEUBO: A decision-theoretic acquisition function for preferential Bayesian
optimization. In International Conference on Artificial Intelligence and Statistics (pp. 1093-1114). PMLR.
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Summary
In this lecture, we have learned about Preferential Bayesian
Optimization, a method for optimizing black-box functions using
preference feedback.
We have discussed the Gaussian Process regression, which is
used to model the underlying distribution of the function.
We have also explored different acquisition functions, including
Pure Exploration, Copeland Expected Improvement, and
Dueling-Thompson Sampling, to find the Condorcet winner.
Finally, we have introduced the qEUBO, which aims to maximize
the expected utility of the query.
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Discussion and Q&A
Next lecture:

Aggregated Preference Optimization via
Mechanism Design
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