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Exploration vs exploitation in recommendation systems

Goal. Recommend option of high value to user

Observation. Information about options comes from prior user 
experiences

• Users are both producers and consumers of information

For overall welfare optimization: balance exploration vs exploitation
• Explore many options to gather information about alternatives

• Exploit the current information by recommending the seemingly best 
option



Motivating applications: 
Waze - user based navigation

•Real time navigation recommendations

•Based on user inputs
• Cellular/GPS

•Recommendation dilemma:
• Need to try alternate routes to estimate 

time
• Actually, done in practice
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Motivating applications:
User based recommendation systems

•Recommendation web sites

•Example: TripAdvisor

•User based reviews

•Popularity Index
• Proprietary algo.
• Self-reinforcement

•Can be used to induce exploration
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Exploration problem 

• Prior bias of users leads to lack of exploration 

• Can miss good options that a priori seem inferior

• System needs to incentivize exploration

• This talk: incentivizing exploration through information asymmetry



Modelling Goals

•Repeated interaction between a planner and multiple agents

•Each agent picks one among a set of available options
•Routes in a network, hotels, restaurants

•Agents arrive, pick an action and report feedback to planner

•Agents are strategic: maximize reward conditional on  
information

•Planner wants to learn best alternative and maximize overall 
welfare of agents



Research Questions

•Planner limitations
• No monetary transfers
• Controls information flow between agents

•Can the planner induce exploration?
• Learn best alternative

•What is the rate of learning?
• Impact of agent incentives on learning rate

•Extensions (briefly mention) 
•Multiple agents arrive at a time with interconnected payoffs (game)
• Planner has arbitrary objective function
•Observed and unobserved heterogeneity across agents



Main model
Bayesian incentive compatible bandit exploration



Bayesian Incentive-Compatible Bandit Model

•  

*We will impose some assumptions on the priors
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Planner’s performance measure

•  

Welfare of always 
best action

Expected welfare of 
recommendation 

algorithm
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Agents are strategic

•  



How to incentivize: Information Asymmetry

Users do not observe rewards or recommendations of previous users

Unaware whether rewards of previous steps have made a priori better arms 
worse than a priori worse arms

Information flow from prior users is at the hand of planner

Information is revealed only through recommended action and knowledge of 
planner policy



Main question

•  



Preview of main results: Bayesian Regret

•  



Preview of main results: Ex-post Regret

•  



Preview of main results: extensions

•  



Some related work

•  



Main Ideas



Two actions, deterministic rewards
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 Gains if you are 
unlucky guinea pig

“Gains” if you are not and 
action 1 is worse than 1/2
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Two actions, stochastic rewards
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Two actions: black box reduction
•  
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Two actions, ex-post regret
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Two actions, ex-post regret
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Active arms elimination
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Unobserved Heterogeneity 
and Confounding



Unobserved Heterogeneity 

•  



Confounding Bias

•  



Recommendations as Instruments

•  



Instrumental Variables

Instrumental Variable: any random variable Z that 
affects the treatment (log-price) T but does not affect 
the outcome (log-demand) Y other than through the 
treatment [Wright’28, Bowden-Turkington’90, Angrist-Krueger’91, Imbens-Angrist’94]

T Y

U

Z

unobserved 
confounder

outcome

treatmentinstrument

Instruments are widely used

• Policy. Judge leniency => Effects of incarceration

• Healthcare. Ambulance company assignment => Hospital quality

• Digital experimentation. Recommendation A/B test => Effects of user induced actions 



Identification of Causal Effects via 
Instruments
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Instrument Strength/Compliance Level

•  



Online Instrumental Variable Regression

•  
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Instrumental Active arms elimination

    

…

   

 

Continuously run IV regression after 
every step of “both-arm collection”



Summary

•  

Thank you
Bayesian incentive compatible bandit exploration, Conference on Economics and Computation, 2015

Bayesian exploration: incentivizing exploration in Bayesian games, Conference on Economics and Computation, 2016



User-Heterogeneity: 
Contextual Bandit Extension
•  

35



Key idea: many arms

•  

Pull arm 1
Pull posterior better arm 

from 1,,2

  

Recommend arm 2

Pull posterior better arm 
from 1,2,3

 

Recommend arm 3

Pull posterior better arm 
from 1,2,3,4

 

Recommend arm 4


