Auction Theory and the Internet

Jason D. Hartline Northwestern University

Textbook Manuscript: Mechanism Design and Approximation http://jasonhartline.com/MDnA/

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Protocols and Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Protocols and Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

General Theme: resource allocation.

• solution: activity rule (Amazon) (extend endtime after last bid)

• solution: activity rule (Amazon) (extend endtime after last bid)

Freeloading in P2P File Sharing

• solution: tit-for-tat (BitTorrent) (no uploads \Rightarrow no downloads)

• solution: activity rule (Amazon) (extend endtime after last bid)

Freeloading in P2P File Sharing

 solution: tit-for-tat (BitTorrent) (no uploads ⇒ no downloads)

Email spam

- solution 1: filtering
- solution 2: micropayments
- solution 3: proofs of work

• solution: activity rule (Amazon) (extend endtime after last bid)

Freeloading in P2P File Sharing

 solution: tit-for-tat (BitTorrent) (no uploads ⇒ no downloads)

Email spam

- solution 1: filtering
- solution 2: micropayments
- solution 3: proofs of work

Showrooming in Search Markets

- solution 1: parity clause?
- solution 2: loyalty program?
- solution 3: paid placement?

• solution: activity rule (Amazon) (extend endtime after last bid)

Freeloading in P2P File Sharing

 solution: tit-for-tat (BitTorrent) (no uploads ⇒ no downloads)

Email spam

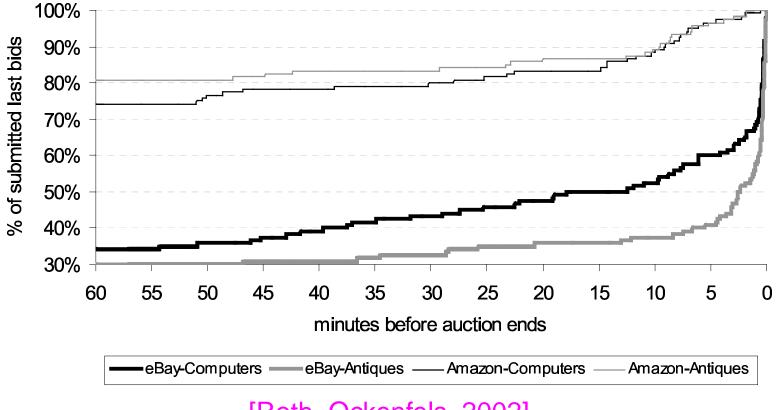
- solution 1: filtering
- solution 2: micropayments
- solution 3: proofs of work

Showrooming in Search Markets

- solution 1: parity clause?
- solution 2: loyalty program?
- solution 3: paid placement?

Conclusion: incentive problems need incentive solutions.

Bid-sniping in eBay vs Amazon



[Roth, Ockenfels, 2002]

- 1. single-item auction.
- 2. objectives: social welfare vs. seller profit.
- 3. applications:
 - paid search
 - retail: pricing vs. auctions,
 - intermediation: fees versus double auctions
 - competing platforms

Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize utility = value price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize utility = value price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

- Maximize social surplus, i.e., the value of the winner.
- Maximize *seller profit*, i.e., the payment of the winner.

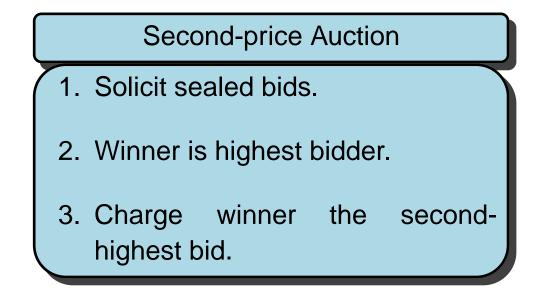
Objective 1: maximize social surplus

Example: The Second-price Auction _____

Second-price Auction

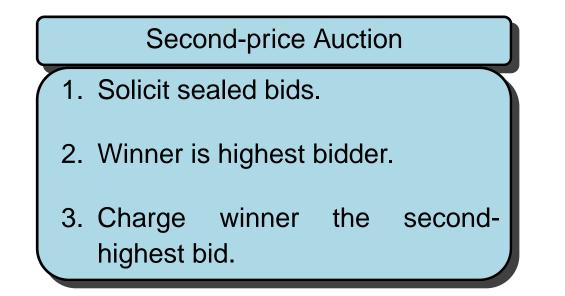
- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner the secondhighest bid.

Example: The Second-price Auction ____



Example Input: $\mathbf{b} = (2, 6, 4, 1).$

Example: The Second-price Auction _



Example Input: $\mathbf{b} = (2, 6, 4, 1).$

Questions:

- what are equilibrium strategies?
- what is equilibrium outcome?
- which has higher surplus in equilibrium?
- which has higher profit in equilibrium?

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.

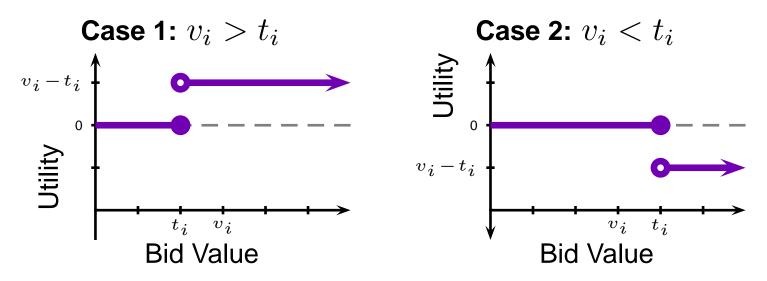
Case 1:
$$v_i > t_i$$
 Case 2: $v_i < t_i$

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.



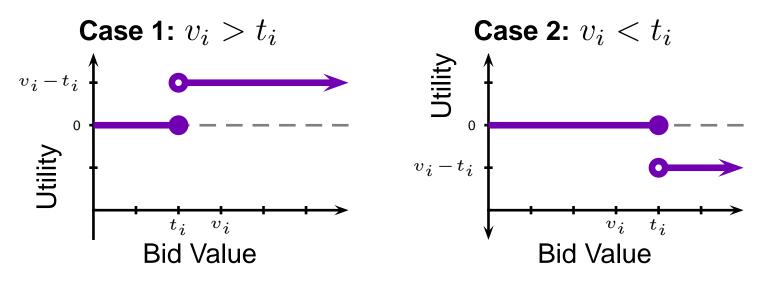
Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

How should bidder *i* bid?

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.



Result: Bidder *i*'s *dominant strategy* is to bid $b_i = v_i!$

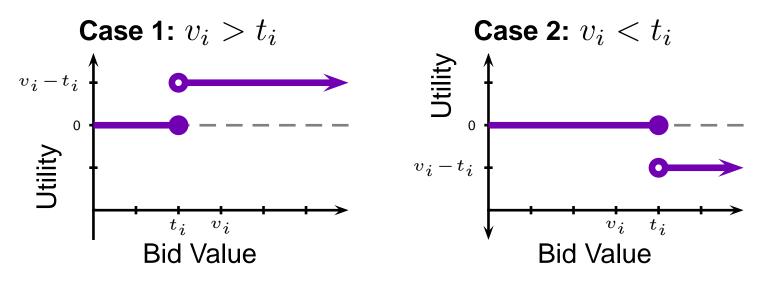
Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

How should bidder *i* bid?

- Let $t_i = \max_{j \neq i} b_j$. \Leftarrow "critical value"
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.



Result: Bidder *i*'s *dominant strategy* is to bid $b_i = v_i!$

Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

Second-price Auction

Solicit sealed bids. 2. Winner is highest bidder.
 Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids = values (from Lemma).
- winner is highest bidder (by definition).
- \Rightarrow winner is bidder with highest valuation (optimal social surplus).

Second-price Auction

Solicit sealed bids. 2. Winner is highest bidder.
 Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids = values (from Lemma).
- winner is highest bidder (by definition).
- \Rightarrow winner is bidder with highest valuation (optimal social surplus).

What about revenue?

Objective 2: maximize seller profit

(other objectives are similar)

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Order Statistics: in expectation, uniform random variables evenly divide interval.

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Order Statistics: in expectation, uniform random variables evenly divide interval.

$$\mathbf{E}[v_2] \quad \mathbf{E}[v_1] \quad \mathbf{E}$$

Example Scenario: two bidders, uniform values

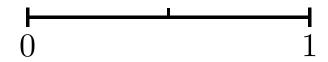
Example Scenario: two bidders, uniform values

What is profit of second-price auction?

Example Scenario: two bidders, uniform values

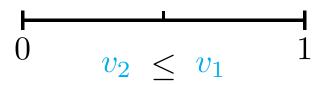
What is profit of second-price auction?

• draw values from unit interval.



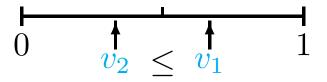
What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



What is profit of second-price auction?

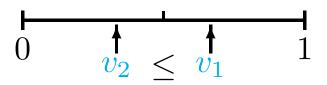
- draw values from unit interval.
- Sort values.



• In expectation, values evenly divide unit interval.

What is profit of second-price auction?

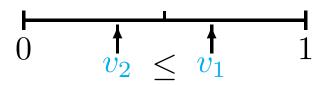
- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\mathbf{Profit}] = \mathbf{E}[v_2]$

What is profit of second-price auction?

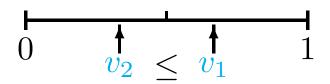
- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

Can we get more profit?

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

Second-price Auction with reserve \boldsymbol{r}

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

- draw values from unit interval.
- Sort values, $v_1 \geq v_2$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

• draw values from unit interval.

• Sort values,
$$v_1 \ge v_2$$

Case Analysis: $\Pr[\text{Case } i]$ $E[\text{Profit}]$
Case 1: $\frac{1}{2} > v_1 \ge v_2$
Case 2: $v_1 \ge v_2 \ge \frac{1}{2}$
Case 3: $v_1 \ge \frac{1}{2} > v_2$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

• draw values from unit interval.

• Sort values,
$$v_1 \ge v_2$$

Case Analysis: $\Pr[\text{Case } i]$ $E[\text{Profit}]$
Case 1: $\frac{1}{2} > v_1 \ge v_2$ $1/4$
Case 2: $v_1 \ge v_2 \ge \frac{1}{2}$ $1/4$
Case 3: $v_1 \ge \frac{1}{2} > v_2$ $1/2$

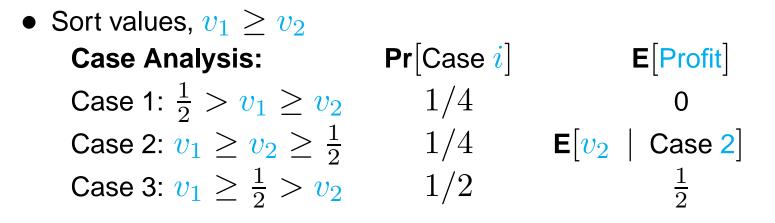
Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

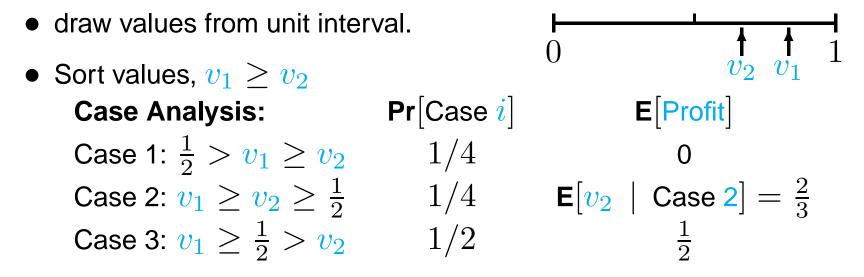
draw values from unit interval.



Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

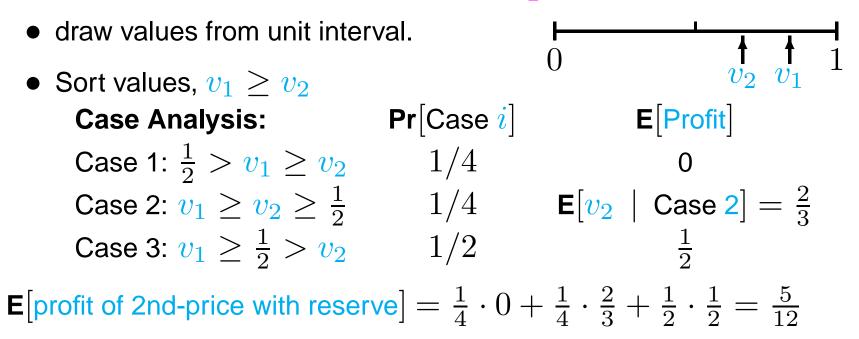
Lemma: Second-price with reserve r has truthful DSE.



Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

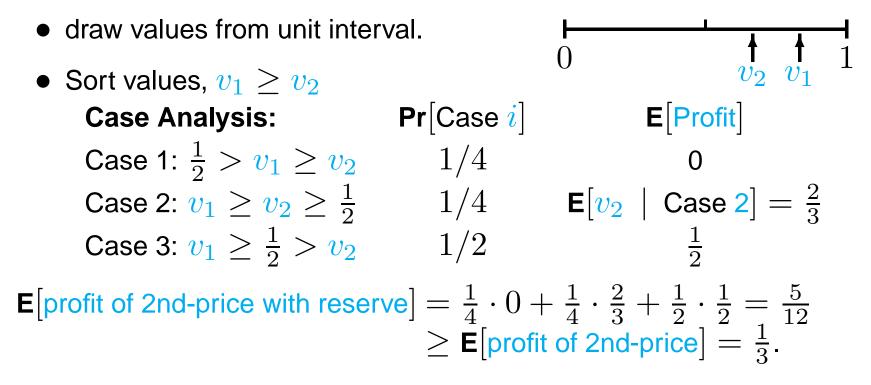
Lemma: Second-price with reserve r has truthful DSE.



Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

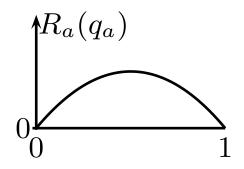
Lemma: Second-price with reserve r has truthful DSE.

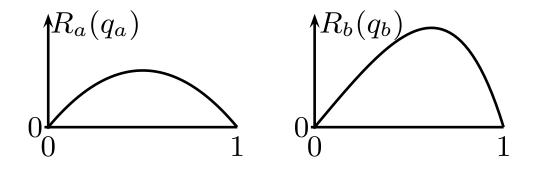


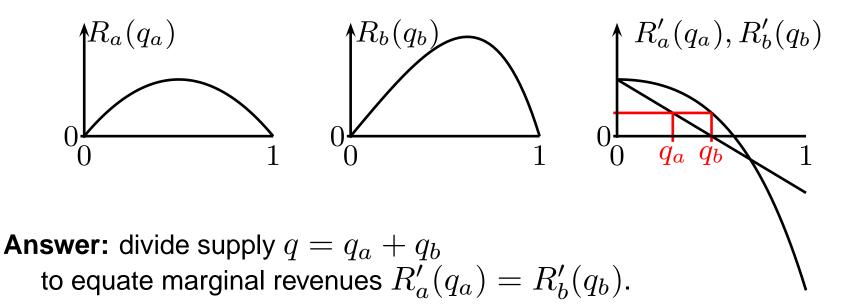
Question: What auction maximizes profit?

Question: What auction maximizes profit?

Answer: second-price with reserve (for symmetric bidders)







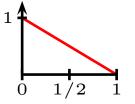
Theorem: optimal auction maximizes "marginal revenue". [Myerson '81; Bulow, Roberts '89]

Theorem: optimal auction maximizes "marginal revenue".

[Myerson '81; Bulow, Roberts '89]

Example: two bidders, uniform values

• sorted value:
$$V(q) = 1 - q$$
.



1

Theorem: optimal auction maximizes "marginal revenue".

[Myerson '81; Bulow, Roberts '89]

Example: two bidders, uniform values

• sorted value:
$$V(q) = 1 - q$$
.

• revenue curve: from offering price V(q).

Theorem: optimal auction maximizes "marginal revenue".

Example: two bidders, uniform values

• sorted value: V(q) = 1 - q.

[Myerson '81; Bulow, Roberts '89]

- revenue curve: from offering price V(q).
 - \Rightarrow buys and pays V(q) with probability q.

$$\Rightarrow R(q) = q \cdot V(q) = q - q^2.$$

Theorem: optimal auction maximizes "marginal revenue".

Example: two bidders, uniform values

- sorted value: V(q) = 1 q.
- revenue curve: from offering price V(q).
 - \Rightarrow buys and pays V(q) with probability q.

$$\Rightarrow R(q) = q \cdot V(q) = q - q^2.$$

[Myerson '81; Bulow, Roberts '89]

Theorem: optimal auction maximizes "marginal revenue".

Example: two bidders, uniform values

- sorted value: V(q) = 1 q.
- revenue curve: from offering price V(q).
 - \Rightarrow buys and pays V(q) with probability q.

$$\Rightarrow R(q) = q \cdot V(q) = q - q^2.$$

• marginal revenue:
$$R'(q) = 1 - 2q$$
.

[Myerson '81; Bulow, Roberts '89] $\begin{array}{c}
 1 \\
 0 \\
 1/2 \\
 \end{array}$ $\begin{array}{c}
 1 \\
 1/2 \\
 \end{array}$ $\begin{array}{c}
 1 \\
 1/2 \\
 \end{array}$

Theorem: optimal auction maximizes "marginal revenue".

Example: two bidders, uniform values

- sorted value: V(q) = 1 q.
- revenue curve: from offering price V(q)
 - \Rightarrow buys and pays V(q) with probability q.

$$\Rightarrow R(q) = q \cdot V(q) = q - q^2.$$

• marginal revenue:
$$R'(q) = 1 - 2q$$
.

[Myerson '81; Bulow, Roberts '89]

$$I = \begin{bmatrix} 1 & 1 \\ 0 & 1/2 \\ 0 & 1/2 \end{bmatrix}$$

$$V(q).$$
Ibility q .

1

[Myerson '81; Bulow, Roberts '89]

Theorem: optimal auction maximizes "marginal revenue".

Example: two bidders, uniform values

- sorted value: V(q) = 1 q.
- revenue curve: from offering price V(q).

 \Rightarrow buys and pays V(q) with probability q.

$$\Rightarrow R(q) = q \cdot V(q) = q - q^2.$$

• marginal revenue:
$$R^{\prime}(q)=1-2q$$

- Maximize "maginal revenue"
 - \Rightarrow sell to bidder *i* with highest positive $R'(q_i)$.
 - \Rightarrow sell to bidder *i* with highest value at least 1/2.

14

Theorem: optimal auction maximizes "marginal revenue".

Example: two bidders, uniform values

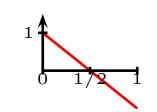
- sorted value: V(q) = 1 q.
- revenue curve: from offering price V(q).

 \Rightarrow buys and pays V(q) with probability q.

$$\Rightarrow R(q) = q \cdot V(q) = q - q^2.$$

- marginal revenue: R'(q) = 1 2q.
- Maximize "maginal revenue"
 - \Rightarrow sell to bidder *i* with highest positive $R'(q_i)$.
 - \Rightarrow sell to bidder *i* with highest value at least 1/2.
 - \Rightarrow second-price auction with reserve 1/2.

[Myerson '81; Bulow, Roberts '89]



14

Theorem: optimal auction maximizes "marginal revenue".

Example: two bidders, uniform values

- sorted value: V(q) = 1 q.
- revenue curve: from offering price V(q).

 \Rightarrow buys and pays V(q) with probability q.

$$\Rightarrow R(q) = q \cdot V(q) = q - q^2.$$

- marginal revenue: R'(q) = 1 2q.
- Maximize "maginal revenue"
 - \Rightarrow sell to bidder *i* with highest positive $R'(q_i)$.
 - \Rightarrow sell to bidder *i* with highest value at least 1/2.
 - \Rightarrow second-price auction with reserve 1/2.

Corollary: for symmetric bidders, second-price w. reserve is optimal. [Myerson '81]

[Myerson '81; Bulow, Roberts '89]

Observations:

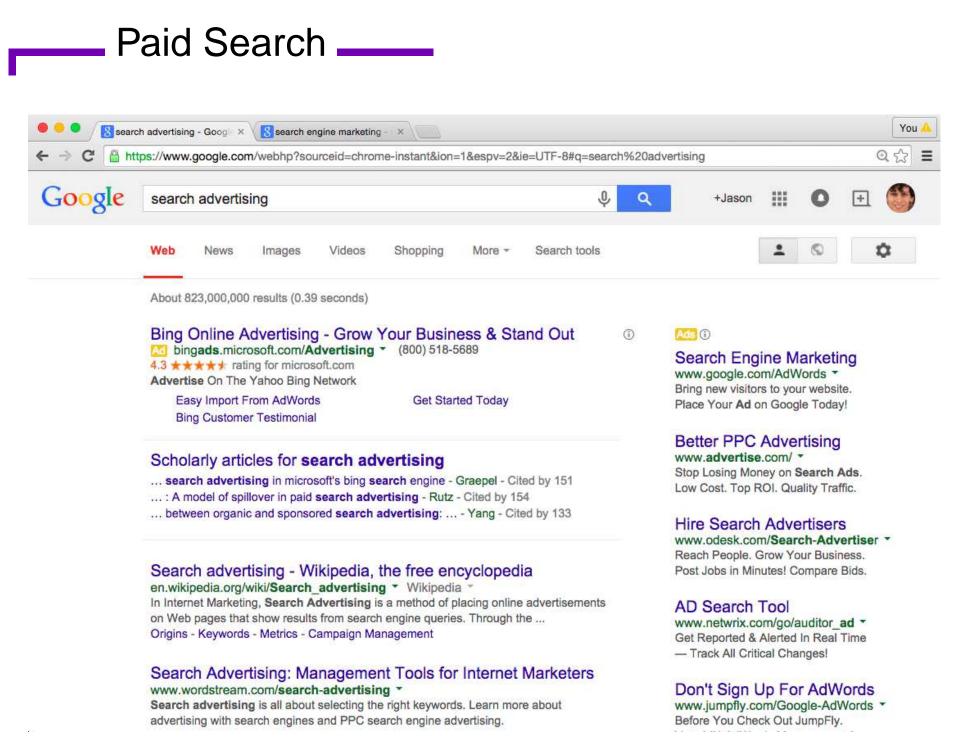
- single auction maximizes surplus (for any distribution).
- pretending to value the good increases seller profit.
- which mechanism has better profit depends on distribution.

Observations:

- single auction maximizes surplus (for any distribution).
- pretending to value the good increases seller profit.
- which mechanism has better profit depends on distribution.

Questions?

- 1. paid search (e.g., Google ads)
- retail: auctions vs. pricing (e.g., eBay Auctions vs. Buy it Now)
- 3. intermediation: double auctions vs. fee on sale. (e.g., real estate, eBay, Booking.com)
- 4. competing platforms (e.g., Google ads vs. Bing ads)



Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.

Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.

Reserve Optimization: [Ostrovsky, Schwarz '11]

Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.

Reserve Optimization: [Ostrovsky, Schwarz '11]

• learn distribution family: log-normal.

Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.

Reserve Optimization: [Ostrovsky, Schwarz '11]

learn distribution family: log-normal.
 (Note: bids ≠ values, must use econometrics)

Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.

Reserve Optimization: [Ostrovsky, Schwarz '11]

- learn distribution family: log-normal.
 (Note: bids ≠ values, must use econometrics)
- estimate distribution parameters for each keyword.

Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.

Reserve Optimization: [Ostrovsky, Schwarz '11]

- learn distribution family: log-normal.
 (Note: bids ≠ values, must use econometrics)
- estimate distribution parameters for each keyword.
- compute optimal price from estimated distribution.

Generalized Second Price Auction [Google '02]

- 1. A user issues a query.
- 2. Find all ads matching query terms and exceed reserve.
- 3. Rank ads by bid \times *click-through-rate*.
- 4. Charge advertiser *minimum bid to maintain position* if user clicks on ad.

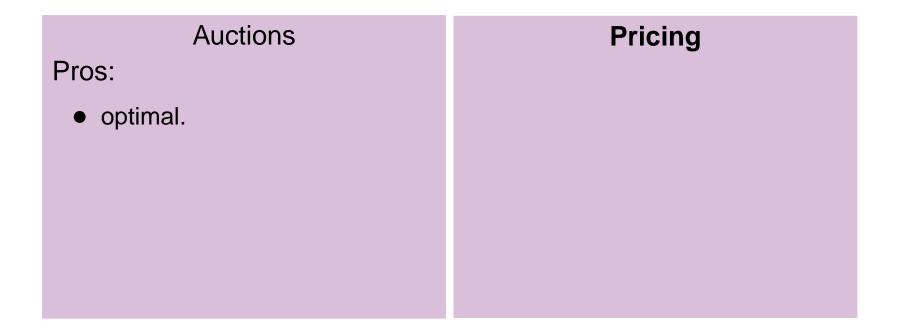
Note: GSP optimal if reserve is chosen for distribution.

Reserve Optimization: [Ostrovsky, Schwarz '11]

- learn distribution family: log-normal.
 (Note: bids ≠ values, must use econometrics)
- estimate distribution parameters for each keyword.
- compute optimal price from estimated distribution.

Conclusion: improved Yahoo!'s revenue by 5-10 percent (billions!)

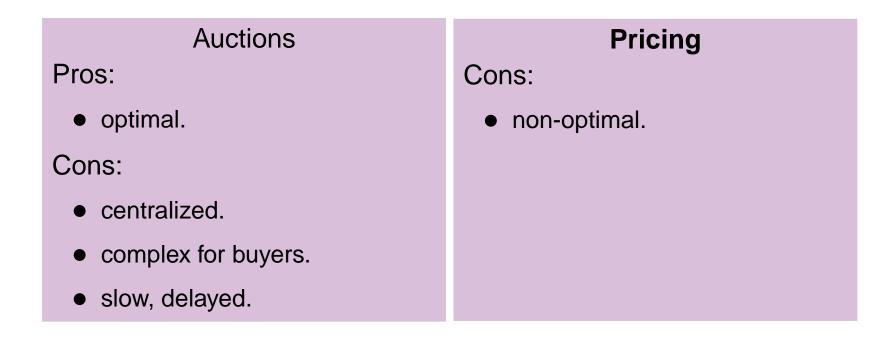
Auctions	Pricing



Retail: Auctions vs. Pricing

Auctions	Pricing
Pros:	
• optimal.	
Cons:	
 centralized. 	
• complex for buyers.	
 slow, delayed. 	

Retail: Auctions vs. Pricing _____



Retail: Auctions vs. Pricing _____

Auctions

Pros:

• optimal.

Cons:

- centralized.
- complex for buyers.
- slow, delayed.

Pricing

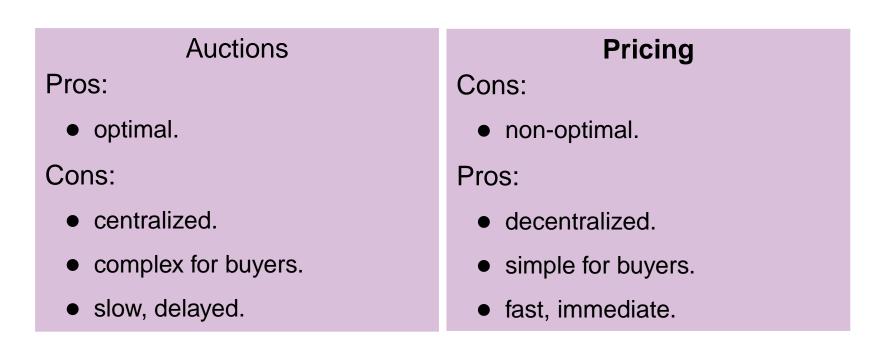
Cons:

• non-optimal.

Pros:

- decentralized.
- simple for buyers.
- fast, immediate.

Retail: Auctions vs. Pricing



Theorem: for pricing k units: loss at most $1/\sqrt{2\pi k}$ of optimal. (e.g., k = 1: 37%; k = 10: 13%; k = 100: 4% in the worst case!)

Intermediation (w. revenue maximization) _____

Double Auctions	Fee on sale

Intermediation (w. revenue maximization)

Double Auctions	Fee on sale
• buyer and seller bid.	
• trade if "marg. rev. > marg. loss"	
 buyer pays "critical value"; seller receives "critical cost"; broker keeps difference. 	

Intermediation (w. revenue maximization) _

Double Auctions

- buyer and seller bid.
- trade if "marg. rev. > marg. loss"
- buyer pays "critical value"; seller receives "critical cost"; broker keeps difference.

Fee on sale

- seller posts price
- buyer takes it or leaves it.
- seller pays fee to broker.

Intermediation (w. revenue maximization) _

Double Auctions

- buyer and seller bid.
- trade if "marg. rev. > marg. loss"
- buyer pays "critical value"; seller receives "critical cost"; broker keeps difference.

Pros:

• optimal.

Cons:

- centralized.
- complex for buyers.
- slow, delayed.
- budget imbalance.

Fee on sale

- seller posts price
- buyer takes it or leaves it.
- seller pays fee to broker.

Intermediation (w. revenue maximization) _

Double Auctions

- buyer and seller bid.
- trade if "marg. rev. > marg. loss"
- buyer pays "critical value"; seller receives "critical cost"; broker keeps difference.

Pros:

• optimal.

Cons:

- centralized.
- complex for buyers.
- slow, delayed.
- budget imbalance.

Fee on sale

- seller posts price
- buyer takes it or leaves it.
- seller pays fee to broker.

Cons:

• usually non-optimal.

Pros:

- decentralized.
- simple for buyers.
- fast, immediate.
- budget balance.

Intermediation (w. revenue maximization) -

Double Auctions

- buyer and seller bid.
- trade if "marg. rev. > marg. loss"
- buyer pays "critical value"; seller receives "critical cost"; broker keeps difference.

Pros:

• optimal.

Cons:

- centralized.
- complex for buyers.
- slow, delayed.
- budget imbalance.

Fee on sale

- seller posts price
- buyer takes it or leaves it.
- seller pays fee to broker.

Cons:

• usually non-optimal.

Pros:

- decentralized.
- simple for buyers.
- fast, immediate.
- budget balance.

Theorem: fee on sale is sometimes optimal; usually close to optimal. [Loertscher, Niedermayer 2011]

Question: what about competition between two platforms? (bidders may choose to go to competing platform)

Question: what about competition between two platforms? (bidders may choose to go to competing platform)

Related Results:

Question: what about competition between two platforms? (bidders may choose to go to competing platform)

Related Results: Revenue of second-price auction:

• no reserve and n bidder > optimal reserve and n - 1 bidders. [Bulow, Klemperer '96]

Question: what about competition between two platforms? (bidders may choose to go to competing platform)

Related Results: Revenue of second-price auction:

• no reserve and n bidder > optimal reserve and n-1 bidders.

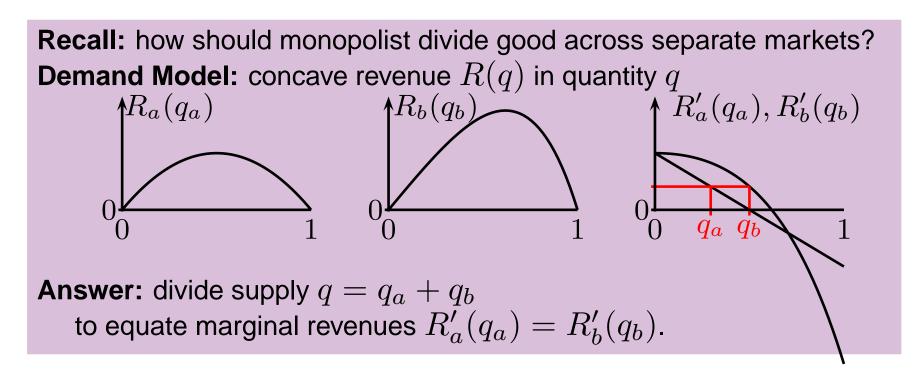
[Bulow, Klemperer '96]

• with entry cost, no reserve is optimal.[McAfee, McMillan '87]

Example: Google ads vs. Bing ads _____

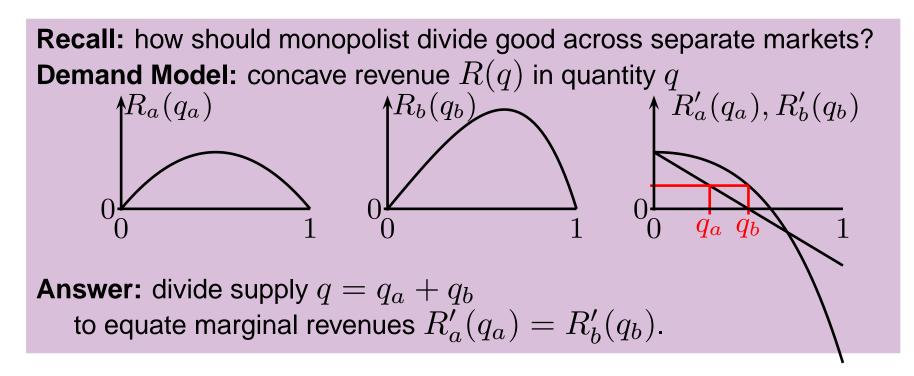
Recall: how should monopolist divide good across separate markets? **Demand Model:** concave revenue R(q) in quantity q $\int_{0}^{R_a(q_a)} \int_{0}^{R_b(q_b)} \int_{0}^{R_b(q_b)} \int_{0}^{R_a(q_a), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b), R_b'(q_b), R_b'(q_b), R_b'(q_b), R_b'(q_b)} \int_{0}^{R_b(q_b), R_b'(q_b), R_b'(q_b)$

Example: Google ads vs. Bing ads _____



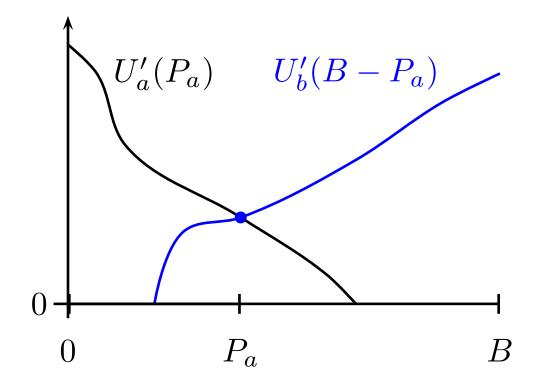
Related Question: How should advertiser divide budget across Bing and Google?

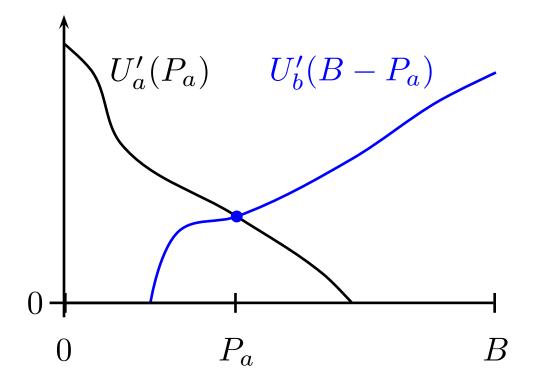
Example: Google ads vs. Bing ads _____



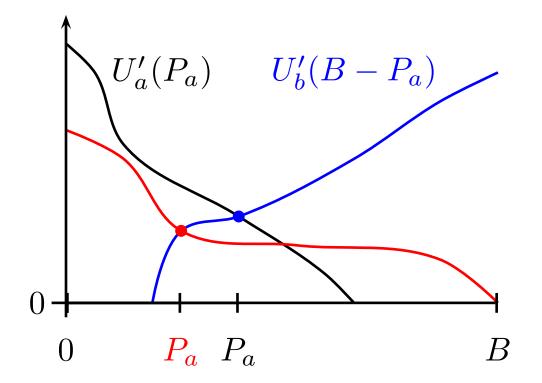
Related Question: How should advertiser divide budget across Bing and Google?

Answer: The same.

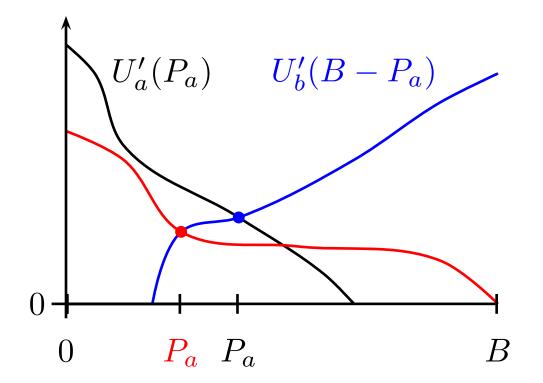




Question: what if *a* increases ad prices?



Question: what if *a* increases ad prices?



Question: what if *a* increases ad prices?

Answer: advertisers moves spend from a to b.

- 1. single-item auction.
- 2. objectives: social welfare vs. seller profit.
- 3. applications:
 - paid search
 - retail: pricing vs. auctions,
 - intermediation: fees versus double auctions
 - competing platforms

- 1. single-item auction.
- 2. objectives: social welfare vs. seller profit.
- 3. applications:
 - paid search
 - retail: pricing vs. auctions,
 - intermediation: fees versus double auctions
 - competing platforms

Questions?

Mechanism Design for the Classroom (Optimization of Scoring Rules)

Jason Hartline

ML from Human Preferences - November 13,

Northwestern University (visiting Stanford 2023–2024) hartline@northwestern.edu

Yingkai Li

Liren Shan

Yifan Wu

Mechanism Design for the Classroom

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:

• grading randomized exams: ex post fairness?

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness?
- grading with partial credit: incentivizing precise answers?

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness?
- grading with partial credit: incentivizing precise answers?
- group projects: incentivizing teamwork?

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness?
- grading with partial credit: incentivizing precise answers?
- group projects: incentivizing teamwork?
- peer grading: incentives for accurate peer reviews?

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness? [Chen, Hartline, Zoeter FORC'23]
- grading with partial credit: incentivizing precise answers? [Chen, Hartline, Zoeter]
- group projects: incentivizing teamwork?
- peer grading: incentives for accurate peer reviews? [Li, Hartline, Shan, Wu EC'22]

1. A peer grading platform (PeerPal).

- 2. Grading peer reviews with proper scoring rules is horrible!
- 3. (Quick fix: Manually grade the peer reviews.)
- 4. Optimization of scoring rules.
- 5. Fundamental Role of Scoring Rules

Peer grading system:

- Canvas plugin (https://www.peerpal.io/)
- used in "Intro to CS", "Intro to Algorithms", "Intro to Online Markets", "Mechanism Design", etc.

Peer grading system:

- Canvas plugin (https://www.peerpal.io/)
- used in "Intro to CS", "Intro to Algorithms", "Intro to Online Markets", "Mechanism Design", etc.

Main Algorithms:

- matching peers and TAs to submissions
- grading submissions from peer reviews
- grading peer reviews from TA reviews

Advantages of Peer Grading

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

- reduces teacher grading.
- promptness of feedback.

Advantages of Peer Grading

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

- reduces teacher grading.
- promptness of feedback.

Advantages of Peer Grading

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...

(3.7% appeal rate; 1-6% strongly disagree with survey questions)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...

(3.7% appeal rate; 1-6% strongly disagree with survey questions)

Main Challenge: incentivizing accurate peer reviews.

```
(i.e., "grading the grading")
```

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

Approach:

- 1. pick 10 submissions for TA to review.
- 2. assign each peer 1 of these 10 submissions at random to review.
- 3. assign each peer 2 of remaining 40 submissions at random to review.
- 4. grade Step 2 peer reviews against TA review. (don't grade other reviews)

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

Approach:

- 1. pick 10 submissions for TA to review.
- 2. assign each peer 1 of these 10 submissions at random to review.
- 3. assign each peer 2 of remaining 40 submissions at random to review.
- 4. grade Step 2 peer reviews against TA review. (don't grade other reviews)

Remaining challenge: grading peer reviews from TA review.

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

Approach:

- 1. pick 10 submissions for TA to review.
- 2. assign each peer 1 of these 10 submissions at random to review.
- 3. assign each peer 2 of remaining 40 submissions at random to review.
- 4. grade Step 2 peer reviews against TA review. (don't grade other reviews)

Remaining challenge: grading peer reviews from TA review.

Idea: use proper scoring rule! [McCarthy PNAS'56] [Savage JASA'71] [Gneiting, Raftery JASA'07] [...].

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

Grading Review with Proper Scoring Rule

• TA score $\theta \in [0,1]$ (truth)

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Example

• peer report r = 0.8

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

- peer report r = 0.8
- TA report $\theta = 0.3$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

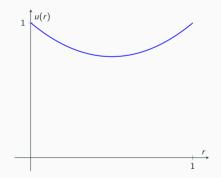
Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

• let $u(r) = 1 - r + r^2$

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$



Grading Review with Proper Scoring Rule

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

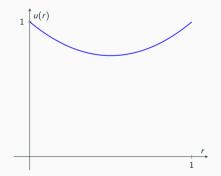
Proof.

- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

 $S(r,\theta) = u(r) + u'(r) (\theta - r) + \kappa(\theta).$

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$



Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

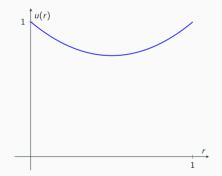
- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

$$S(r,\theta) = u(r) + u'(r)(\theta - r) + \kappa(\theta).$$

• report cannot affect κ (so ignore it)

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$



Proper Scoring Rules

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

$$S(r,\theta) = u(r) + u'(r)(\theta - r) + \kappa(\theta).$$

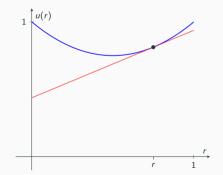
- report cannot affect κ (so ignore it)
- let supporting tangent at r be:

$$h_r(\theta) = u(r) + u'(r)(\theta - r)$$

Example

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$



Proper Scoring Rules

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

$$S(r,\theta) = u(r) + u'(r)(\theta - r) + \kappa(\theta).$$

- report cannot affect κ (so ignore it)
- let supporting tangent at r be:

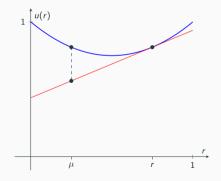
 $h_r(\theta) = u(r) + u'(r)(\theta - r)$

• loss from report r at belief μ : $u(\mu) - h_r(\mu)$. \Box

Example

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$



• assume: TA grade $\theta \in [0.6, 1]$

- assume: TA grade $\theta \in [0.6, 1]$
- strategy: always report r = 0.8

- assume: TA grade $\theta \in [0.6, 1]$
- strategy: always report r = 0.8
- $S(r, \theta) \ge 1 (0.2)^2 = 0.96$

- assume: TA grade $\theta \in [0.6, 1]$
- strategy: always report r = 0.8
- $S(r, \theta) \ge 1 (0.2)^2 = 0.96$

Result

Very little incentive for effort!

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

Submission 42	
	contents of submission
	:

	Peer 1	Peer 2	Peer 3	TA Score	TA Comment
Algorithm	8*	9*	10	9	good solution
Correctness	5*	7*	10	6	missing base case
Clarity	8*	8*	10	8	easy to follow
Quantitative	9	10	5		
Qualitative	8	8	0		
Feedback	see TA review	see TA review	must provide detailed review		

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

Summary: Optimization of Scoring Rules

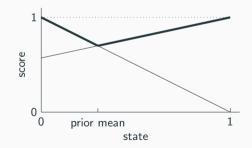
Optimal Scoring Rule for Incentivizing Binary Effort

- peers choose effort or no effort
- maximize: difference in score for effort vs no effort
- subject to: proper and bounded scoring rule.

max_{scoring rule} E_{state, belief with effort}[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

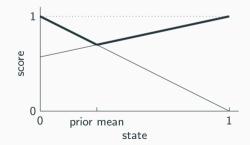
maxscoring rule Estate, belief with effort[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

Theorem optimal single-dimensional scoring rule: choose side of prior mean, score linear in state



maxscoring rule Estate, belief with effort[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

Theorem optimal single-dimensional scoring rule: choose side of prior mean, score linear in state (standard scoring rules like quadratic not approx optimal)

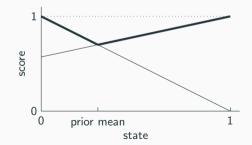


maxscoring rule Estate, belief with effort[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

Theorem optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state (standard scoring rules like quadratic not approx optimal)

Theorem approximately optimal multi-dimensional scoring rule: maximum over optimal separate scoring rules



max_{scoring rule} E_{state, belief with effort}[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

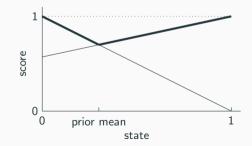
Theorem optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state (standard scoring rules like quadratic not approx optimal)

Theorem

approximately optimal multi-dimensional scoring rule:

maximum over optimal separate scoring rules (average of separate scoring rules not approx optimal)

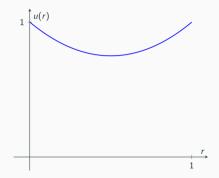


Theorem optimal single-dimensional scoring rule: choose side of prior mean, score linear in state **Theorem** optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

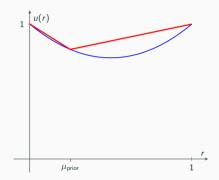
Proof.

• consider ex post bounded scoring rule defined by convex *u*



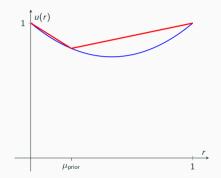
optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}



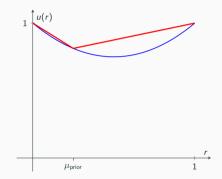
optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:



optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

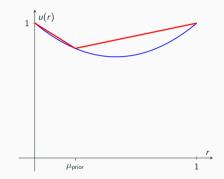
- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.



optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

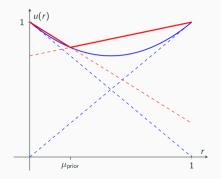
- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.



optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

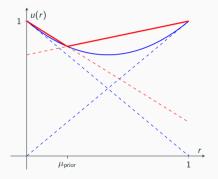
- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.
- score for extremal reports weakly less extreme



optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

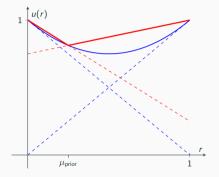
- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.
- score for extremal reports weakly less extreme
 - still ex post bounded.



optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.
- score for extremal reports weakly less extreme
 - still ex post bounded.



1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

analysis of dataset \longrightarrow decision optimization \longrightarrow payoff from decision

Interpretations

Interpretations

• scoring rules are fundamental for understanding good data analyses

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)



Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

• researcher shows behavioral subjects different visual stimuli.



Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

- researcher shows behavioral subjects different visual stimuli.
- measure performance in decision problem (a.k.a., scoring rule).

[Wu, Guo, Mamakos, Hartline, Hullman VIS'23]



Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

- researcher shows behavioral subjects different visual stimuli.
- measure performance in decision problem (a.k.a., scoring rule).
- benchmark against rational agent with and without stimuli.

[Wu, Guo, Mamakos, Hartline, Hullman VIS'23]

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

- researcher shows behavioral subjects different visual stimuli.
- measure performance in decision problem (a.k.a., scoring rule).
- benchmark against rational agent with and without stimuli.

[Wu, Guo, Mamakos, Hartline, Hullman VIS'23]

The classroom as a "computer":

- students: local optimizers
- grader/instructor: imprecise operators
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:

- grading randomized exams: ex post fairness? [Chen, Hartline, Zoeter FORC'23]
- grading with partial credit: incentivizing precise answers? [Chen, Hartline, Zoeter]
- group projects: incentivizing teamwork?
- peer grading: incentives for accurate peer reviews? [Li, Hartline, Shan, Wu EC'22]

Related Work:

- characterizing scoring rules:
 - eliciting full distribution
 - eliciting the mean
 - set of elicitable properties (e.g., variance is not directly elicitable)

[McCarthy '56; Gneiting, Raftery '07] [Abernethy, Frongillo '12] e) [Lambert '11]

Related Work:

- characterizing scoring rules:
 - eliciting full distribution
 - eliciting the mean
 - set of elicitable properties (e.g., variance is not directly elicitable)
- maximize effort with quadratic scoring rules

[McCarthy '56; Gneiting, Raftery '07] [Abernethy, Frongillo '12] •) [Lambert '11]

[Osband '89]

Related Work:

- characterizing scoring rules:
 - eliciting full distribution
 - eliciting the mean
 - set of elicitable properties (e.g., variance is not directly elicitable)
- maximize effort with quadratic scoring rules
- maximize effort in a binary state model with costly samples

[McCarthy '56; Gneiting, Raftery '07] [Abernethy, Frongillo '12] a) [Lambert '11]

[Osband '89]

[Neyman, Noarov, Weinberg '21]

.

Related Work:

٠	characterizing	scoring r	ules:

 eliciting full distribution 	[McCarthy '56; Gneiting, Raftery '07]
 eliciting the mean 	[Abernethy, Frongillo '12]
• set of elicitable properties (e.g., variance is not directly	elicitable) [Lambert '11]
 maximize effort with quadratic scoring rules 	[Osband '89]
 maximize effort in a binary state model with costly samp 	oles [Neyman, Noarov, Weinberg '21]
framework adopted by follow-up works:	
 optimizing max-min objective without knowledge about 	prior and signal [Chen and Yu '21]
 optimization of peer prediction mechanisms 	[Kong '21]
 bounded expected score 	[Papireddygari, Waggoner '22]
 maximizing effort under multi-dimensional effort model 	[Hartline, Li, Shan, Wu '23]
 benchmark for visualization experiments 	[Wu, Guo, Mamakos, Hartline, Hullman '23]

Related Work:

• characterizing scoring rules:

 eliciting full distribution 	[McCarthy '56; Gneiting, Raftery '07]
 eliciting the mean 	[Abernethy, Frongillo '12]
• set of elicitable properties (e.g., variance is not directly elicitable	e) [Lambert '11]
maximize effort with quadratic scoring rules	[Osband '89]
maximize effort in a binary state model with costly samples	[Neyman, Noarov, Weinberg '21]
framework adopted by follow-up works:	
 optimizing max-min objective without knowledge about prior an 	nd signal [Chen and Yu '21]
 optimization of peer prediction mechanisms 	[Kong '21]
 bounded expected score 	[Papireddygari, Waggoner '22]
 maximizing effort under multi-dimensional effort model 	[Hartline, Li, Shan, Wu '23]
• benchmark for visualization experiments [Wu, 0	Guo, Mamakos, Hartline, Hullman '23]
ex post value of information	[Frankel, Kamenica '19]
	 eliciting the mean set of elicitable properties (e.g., variance is not directly elicitable maximize effort with quadratic scoring rules maximize effort in a binary state model with costly samples framework adopted by follow-up works: optimizing max-min objective without knowledge about prior ar optimization of peer prediction mechanisms bounded expected score maximizing effort under multi-dimensional effort model benchmark for visualization experiments