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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?

Internet Protocols and Applications: file sharing, reputation
systems, web search, web advertising, email, Internet auctions,
congestion control, etc.

General Theme: resource allocation.
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Case Studies

Bid sniping in eBay

• solution: activity rule (Amazon)
(extend endtime after last bid)
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Case Studies

Bid sniping in eBay

• solution: activity rule (Amazon)
(extend endtime after last bid)

Freeloading in P2P File Sharing

• solution: tit-for-tat (BitTorrent)
(no uploads ⇒ no downloads)

Email spam

• solution 1: filtering

• solution 2: micropayments

• solution 3: proofs of work

Showrooming in Search Markets

• solution 1: parity clause?

• solution 2: loyalty program?

• solution 3: paid placement?

Conclusion: incentive problems need incentive solutions.
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Bid-sniping in eBay vs Amazon

[Roth, Ockenfels, 2002]
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Overview

1. single-item auction.

2. objectives: social welfare vs. seller profit.

3. applications:

• paid search

• retail: pricing vs. auctions,

• intermediation: fees versus double auctions

• competing platforms
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Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.
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Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

• Maximize social surplus, i.e., the value of the winner.

• Maximize seller profit, i.e., the payment of the winner.
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Objective 1: maximize social surplus



Example: The Second-price Auction

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the second-
highest bid.
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Example: The Second-price Auction

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the second-
highest bid.

Example Input: b = (2, 6, 4, 1).
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Example: The Second-price Auction

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the second-
highest bid.

Example Input: b = (2, 6, 4, 1).

Questions:

• what are equilibrium strategies?

• what is equilibrium outcome?

• which has higher surplus in equilibrium?

• which has higher profit in equilibrium?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti vi
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tivi
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .
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U
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Bid Value

0
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ti vi

U
til
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0
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tivi

Result: Bidder i’s dominant strategy is to bid bi = vi!
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj . ⇐ “critical value”

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til
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Bid Value
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ti vi
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.
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3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).

⇒ winner is bidder with highest valuation (optimal social surplus).

What about revenue?
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Objective 2: maximize seller profit

(other objectives are similar)



Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1

dz
Pr[v ≤ z] = 1.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1

dz
Pr[v ≤ z] = 1.

Order Statistics: in expectation, uniform random variables evenly
divide interval.

0 1
E[v2] E[v1]

✻ ✻
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An example

Example Scenario: two bidders, uniform values
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An example
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2]
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

Can we get more profit?
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.
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Second-price with reserve price

Second-price Auction with reserve r
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highest bidder. 3. Charge 2nd-highest bid.
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1

2
on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1

2
on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr[Case i] E[Profit]

Case 1: 1

2
> v1 ≥ v2

Case 2: v1 ≥ v2 ≥ 1

2

Case 3: v1 ≥ 1

2
> v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1

2
on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr[Case i] E[Profit]

Case 1: 1

2
> v1 ≥ v2 1/4

Case 2: v1 ≥ v2 ≥ 1

2
1/4

Case 3: v1 ≥ 1

2
> v2 1/2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1

2
on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr[Case i] E[Profit]

Case 1: 1

2
> v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1

2
1/4 E[v2 | Case 2]

Case 3: v1 ≥ 1

2
> v2 1/2 1

2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1

2
on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

✻ ✻• Sort values, v1 ≥ v2

Case Analysis: Pr[Case i] E[Profit]

Case 1: 1

2
> v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1

2
1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1

2
> v2 1/2 1

2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1

2
on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

✻ ✻• Sort values, v1 ≥ v2

Case Analysis: Pr[Case i] E[Profit]

Case 1: 1

2
> v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1

2
1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1

2
> v2 1/2 1

2

E[profit of 2nd-price with reserve] = 1

4
· 0 + 1

4
· 2

3
+ 1

2
· 1

2
= 5

12
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1

2
on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

✻ ✻• Sort values, v1 ≥ v2

Case Analysis: Pr[Case i] E[Profit]

Case 1: 1

2
> v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1

2
1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1

2
> v2 1/2 1

2

E[profit of 2nd-price with reserve] = 1

4
· 0 + 1

4
· 2

3
+ 1

2
· 1

2
= 5

12

≥ E[profit of 2nd-price] = 1

3
.
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Profit Maximization

Question: What auction maximizes profit?
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Profit Maximization

Question: What auction maximizes profit?

Answer: second-price with reserve (for symmetric bidders)
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Microeconomics 101

Question: how should monopolist divide good across separate
markets?
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Microeconomics 101

Question: how should monopolist divide good across separate
markets?

Demand Model: concave revenue R(q) in quantity q

Ra(qa)

0 1
0

Rb(qb)

0 1
0

R′

a(qa), R′

b(qb)

0 1
0

qa qb

Answer: divide supply q = qa + qb

to equate marginal revenues R′
a(qa) = R′

b(qb).
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Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson ’81; Bulow, Roberts ’89]

b
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Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson ’81; Bulow, Roberts ’89]

Example: two bidders, uniform values

• sorted value: V (q) = 1 − q.
0 1
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Example: two bidders, uniform values

• sorted value: V (q) = 1 − q.
0 1

1

1/2

• revenue curve: from offering price V (q).
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Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson ’81; Bulow, Roberts ’89]

Example: two bidders, uniform values

• sorted value: V (q) = 1 − q.
0 1

1

1/2

• revenue curve: from offering price V (q).

b

⇒ buys and pays V (q) with probability q.

⇒ R(q) = q · V (q) = q − q2.
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Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson ’81; Bulow, Roberts ’89]

Example: two bidders, uniform values

• sorted value: V (q) = 1 − q.
0 1

1

1/2

• revenue curve: from offering price V (q).

0 11/2

b⇒ buys and pays V (q) with probability q.

⇒ R(q) = q · V (q) = q − q2.

• marginal revenue: R′(q) = 1 − 2q.
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Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson ’81; Bulow, Roberts ’89]

Example: two bidders, uniform values

• sorted value: V (q) = 1 − q.
0 1

1

1/2

• revenue curve: from offering price V (q).

0 11/2

b⇒ buys and pays V (q) with probability q.

⇒ R(q) = q · V (q) = q − q2.

• marginal revenue: R′(q) = 1 − 2q. 0 11/2
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Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson ’81; Bulow, Roberts ’89]

Example: two bidders, uniform values

• sorted value: V (q) = 1 − q.
0 1

1

1/2

• revenue curve: from offering price V (q).

0 11/2

b⇒ buys and pays V (q) with probability q.

⇒ R(q) = q · V (q) = q − q2.

• marginal revenue: R′(q) = 1 − 2q. 0 11/2

1

• Maximize “maginal revenue”

⇒ sell to bidder i with highest positive R′(qi).

⇒ sell to bidder i with highest value at least 1/2.
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Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson ’81; Bulow, Roberts ’89]

Example: two bidders, uniform values

• sorted value: V (q) = 1 − q.
0 1

1

1/2

• revenue curve: from offering price V (q).

0 11/2

b⇒ buys and pays V (q) with probability q.

⇒ R(q) = q · V (q) = q − q2.

• marginal revenue: R′(q) = 1 − 2q. 0 11/2

1

• Maximize “maginal revenue”

⇒ sell to bidder i with highest positive R′(qi).

⇒ sell to bidder i with highest value at least 1/2.

⇒ second-price auction with reserve 1/2.

Corollary: for symmetric bidders, second-price w. reserve is optimal.
[Myerson ’81]
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Optimal Auction Observations

Observations:

• single auction maximizes surplus (for any distribution).

• pretending to value the good increases seller profit.

• which mechanism has better profit depends on distribution.
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Optimal Auction Observations

Observations:

• single auction maximizes surplus (for any distribution).

• pretending to value the good increases seller profit.
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Applications

1. paid search
(e.g., Google ads)

2. retail: auctions vs. pricing
(e.g., eBay Auctions vs. Buy it Now)

3. intermediation: double auctions vs. fee on sale.
(e.g., real estate, eBay, Booking.com)

4. competing platforms (e.g., Google ads vs. Bing ads)
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Paid Search
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Generalized Second Price Auction
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Generalized Second Price Auction

Generalized Second Price Auction [Google ’02]

1. A user issues a query.

2. Find all ads matching query terms and exceed reserve.

3. Rank ads by bid × click-through-rate.

4. Charge advertiser minimum bid to maintain position if user clicks on ad.
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Generalized Second Price Auction [Google ’02]

1. A user issues a query.

2. Find all ads matching query terms and exceed reserve.

3. Rank ads by bid × click-through-rate.

4. Charge advertiser minimum bid to maintain position if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.

Reserve Optimization: [Ostrovsky, Schwarz ’11]

• learn distribution family: log-normal.
(Note: bids 6= values, must use econometrics) [tomorrow’s talk]

• estimate distribution parameters for each keyword.

• compute optimal price from estimated distribution.

Conclusion: improved Yahoo!’s revenue by 5-10 percent (billions!)
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Retail: Auctions vs. Pricing

Auctions Pricing
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Retail: Auctions vs. Pricing

Auctions
Pros:

• optimal.

Cons:

• centralized.

• complex for buyers.

• slow, delayed.

Pricing
Cons:

• non-optimal.

Pros:

• decentralized.

• simple for buyers.

• fast, immediate.

Theorem: for pricing k units: loss at most 1/
√

2πk of optimal.
(e.g., k = 1: 37%; k = 10: 13%; k = 100: 4% in the worst case!)

AUCTION THEORY AND INTERNET – NOVEMBER 26, 2015
21



Intermediation (w. revenue maximization)

Double Auctions Fee on sale
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Intermediation (w. revenue maximization)

Double Auctions

• buyer and seller bid.

• trade if “marg. rev. > marg. loss”

• buyer pays “critical value”; seller
receives “critical cost”; broker
keeps difference.

Fee on sale
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• trade if “marg. rev. > marg. loss”

• buyer pays “critical value”; seller
receives “critical cost”; broker
keeps difference.

Pros:

• optimal.

Cons:

• centralized.

• complex for buyers.

• slow, delayed.

• budget imbalance.

Fee on sale

• seller posts price

• buyer takes it or leaves it.

• seller pays fee to broker.

Cons:

• usually non-optimal.

Pros:

• decentralized.

• simple for buyers.

• fast, immediate.

• budget balance.

Theorem: fee on sale is sometimes optimal; usually close to optimal.
[Loertscher, Niedermayer 2011]
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Duopoly Platform Design

Recall: optimal auction is second-price with reserve (for monopolist).

Question: what about competition between two platforms?
(bidders may choose to go to competing platform)
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Duopoly Platform Design

Recall: optimal auction is second-price with reserve (for monopolist).

Question: what about competition between two platforms?
(bidders may choose to go to competing platform)

Related Results: Revenue of second-price auction:

• no reserve and n bidder > optimal reserve and n − 1 bidders.
[Bulow, Klemperer ’96]

• with entry cost, no reserve is optimal.[McAfee, McMillan ’87]

AUCTION THEORY AND INTERNET – NOVEMBER 26, 2015
23



Example: Google ads vs. Bing ads

Recall: how should monopolist divide good across separate markets?
Demand Model: concave revenue R(q) in quantity q

Ra(qa)

0 1
0

Rb(qb)

0 1
0

R′

a(qa), R′

b(qb)

0 1
0

qa qb

Answer: divide supply q = qa + qb

to equate marginal revenues R′
a(qa) = R′

b(qb).
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Example: Google ads vs. Bing ads

Recall: how should monopolist divide good across separate markets?
Demand Model: concave revenue R(q) in quantity q

Ra(qa)

0 1
0

Rb(qb)

0 1
0

R′

a(qa), R′

b(qb)

0 1
0

qa qb

Answer: divide supply q = qa + qb

to equate marginal revenues R′
a(qa) = R′

b(qb).

Related Question: How should advertiser divide budget across Bing
and Google?

Answer: The same.
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Should Bing Raise Prices?

b

b

U ′
a(Pa) U ′

b(B − Pa)

0 BPa

0
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Should Bing Raise Prices?

b

b

Pa

U ′
a(Pa) U ′

b(B − Pa)

0 BPa

0

Question: what if a increases ad prices?

Answer: advertisers moves spend from a to b.
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Conclusions

1. single-item auction.

2. objectives: social welfare vs. seller profit.

3. applications:

• paid search

• retail: pricing vs. auctions,

• intermediation: fees versus double auctions

• competing platforms
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Mechanism Design for the Classroom

The classroom as a “computer”:

• students: local optimizers

• grader/instructor: imprecise operators

• syllabus: rules that map actions to grades

• student incentives: minimize work, maximize grade

• goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:

• grading randomized exams: ex post fairness?

[Chen, Hartline, Zoeter FORC’23]

• grading with partial credit: incentivizing precise answers?

[Chen, Hartline, Zoeter]

• group projects: incentivizing teamwork?

• peer grading: incentives for accurate peer reviews?

[Li, Hartline, Shan, Wu EC’22]
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A Peer Grading Story

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

3



PeerPal

Peer grading system:

• Canvas plugin (https://www.peerpal.io/)

• used in “Intro to CS”, “Intro to Algorithms”,

“Intro to Online Markets”, “Mechanism Design”, etc.

Main Algorithms:

• matching peers and TAs to submissions

• grading submissions from peer reviews

• grading peer reviews from TA reviews

4

https://www.peerpal.io/


PeerPal

Peer grading system:

• Canvas plugin (https://www.peerpal.io/)

• used in “Intro to CS”, “Intro to Algorithms”,

“Intro to Online Markets”, “Mechanism Design”, etc.

Main Algorithms:

• matching peers and TAs to submissions

• grading submissions from peer reviews

• grading peer reviews from TA reviews

4

https://www.peerpal.io/


Advantages of Peer Grading

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree

(worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, . . .

(3.7% appeal rate; 1-6% strongly disagree with survey questions)

Main Challenge: incentivizing accurate peer reviews.

(i.e., “grading the grading”)
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Grading Peer Reviews

Example Scenario:

• 100 students

• submit homeworks in pairs ⇒ 50 submissions.

• each review three submissions ⇒ 300 peer reviews.

• need to grade: 50 submissions, 300 peer reviews.

Approach:

1. pick 10 submissions for TA to review.

2. assign each peer 1 of these 10 submissions at random to review.

3. assign each peer 2 of remaining 40 submissions at random to review.

4. grade Step 2 peer reviews against TA review. (don’t grade other reviews)

Remaining challenge: grading peer reviews from TA review.

Idea: use proper scoring rule! [McCarthy PNAS’56] [Savage JASA’71] [Gneiting, Raftery JASA’07] [. . . ].
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Remaining challenge: grading peer reviews from TA review.

Idea: use proper scoring rule! [McCarthy PNAS’56] [Savage JASA’71] [Gneiting, Raftery JASA’07] [. . . ].
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A Peer Grading Story

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules
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Proper Scoring Rules

Grading Review with Proper Scoring Rule

• TA score θ ∈ [0, 1] (truth)

• Peer belief µ ∈ [0, 1]; peer report r ∈ [0, 1]

• quadratic scoring rule: S(r , θ) = 1− (θ − r)2

• (if multiple rubric elements, average across rubric)

Example

• peer report r = 0.8

• TA report θ = 0.3

• score S(r , θ) = 1− 0.52 = 0.75

Theorem
Reporting r = µ is optimal for peer.

Proof.

• let u(r) = 1− r + r 2

• algebra ⇒ can rewrite as:

S(r , θ) = u(r) + u′(r) (θ − r) + κ(θ).

• report cannot affect κ (so ignore it)

• let supporting tangent at r be:

hr (θ) = u(r) + u′(r)(θ − r)

• loss from report r at belief µ: u(µ)− hr (µ).

1

1

µ r

r

u(r)
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Standard Scoring Rules are Horrible

The Lazy Peer Strategy

• assume: TA grade θ ∈ [0.6, 1]

• strategy: always report r = 0.8

• S(r , θ) ≥ 1− (0.2)2 = 0.96

Result
Very little incentive for effort!
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Review Grading By Hand

Submission 42
...

contents of submission

...

Peer 1 Peer 2 Peer 3 TA Score TA Comment

Algorithm 8* 9* 10 9 good solution . . .

Correctness 5* 7* 10 6 missing base case . . .

Clarity 8* 8* 10 8 easy to follow . . .

Quantitative 9 10 5

Qualitative 8 8 0

Feedback see TA review see TA review
must provide

detailed review
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Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort

• peers choose effort or no effort

• maximize: difference in score for effort vs no effort

• subject to: proper and bounded scoring rule.

Theorem
optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

(standard scoring rules like quadratic not approx optimal)

Theorem
approximately optimal multi-dimensional scoring rule:

maximum over optimal separate scoring rules

(average of separate scoring rules not approx optimal)

0

1

10 prior mean
state

sc
or
e
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Single-dimensional Optimal Scoring Rules

Theorem
optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

Proof.

• consider ex post bounded scoring rule defined

by convex u

• replace u(r) with V -shape at µprior

• objective E[u(µposterior)− u(µprior)] weakly
increased:

• u(µposterior) weakly increased.

• u(µprior) is unchanged.

• score for extremal reports weakly less extreme

• still ex post bounded.

1

1

µprior

r

u(r)
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• score for extremal reports weakly less extreme

• still ex post bounded.

1

1

µprior

r

u(r)
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A Peer Grading Story

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules
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A Value of Data (via “Revelation Principle”)

analysis of dataset decision optimization payoff from decision

proper scoring rule

Interpretations

• scoring rules are fundamental for understanding good data analyses

• optimal scoring rules for binary effort ⇒ setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

• researcher shows behavioral subjects different visual stimuli.

• measure performance in decision problem (a.k.a., scoring rule).

• benchmark against rational agent with and without stimuli.

[Wu, Guo, Mamakos, Hartline, Hullman VIS’23]
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Mechanism Design for the Classroom

The classroom as a “computer”:

• students: local optimizers

• grader/instructor: imprecise operators

• syllabus: rules that map actions to grades

• student incentives: minimize work, maximize grade

• goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:

• grading randomized exams: ex post fairness? [Chen, Hartline, Zoeter FORC’23]

• grading with partial credit: incentivizing precise answers? [Chen, Hartline, Zoeter]

• group projects: incentivizing teamwork?

• peer grading: incentives for accurate peer reviews? [Li, Hartline, Shan, Wu EC’22]
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Related Work

Related Work:

• characterizing scoring rules:

• eliciting full distribution [McCarthy ’56; Gneiting, Raftery ’07]

• eliciting the mean [Abernethy, Frongillo ’12]

• set of elicitable properties (e.g., variance is not directly elicitable) [Lambert ’11]

• maximize effort with quadratic scoring rules [Osband ’89]

• maximize effort in a binary state model with costly samples [Neyman, Noarov, Weinberg ’21]

• framework adopted by follow-up works:

• optimizing max-min objective without knowledge about prior and signal [Chen and Yu ’21]

• optimization of peer prediction mechanisms [Kong ’21]

• bounded expected score [Papireddygari, Waggoner ’22]

• maximizing effort under multi-dimensional effort model [Hartline, Li, Shan, Wu ’23]

• benchmark for visualization experiments [Wu, Guo, Mamakos, Hartline, Hullman ’23]

• ex post value of information [Frankel, Kamenica ’19]
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