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— Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?
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— Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?

Internet Protocols and Applications: file sharing, reputation
systems, web search, web advertising, email, Internet auctions,
congestion control, etc.

General Theme: resource allocation.
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— Case Studies

Bid sniping in eBay

e solution: activity rule (Amazon)
(extend endtime after last bid)
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— Case Studies

Bid sniping in eBay Freeloading in P2P File Sharing

e solution: activity rule (Amazon) ® solution: tit-for-tat (BitTorrent)
(extend endtime after last bid) (no uploads = no downloads)
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— Case Studies

Bid sniping in eBay Freeloading in P2P File Sharing
® solution: activity rule (Amazon) ® solution: tit-for-tat (BitTorrent)
(extend endtime after last bid) (no uploads = no downloads)
Email spam

e solution 1: filtering
® solution 2: micropayments

e solution 3: proofs of work
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— Case Studies

Bid sniping in eBay Freeloading in P2P File Sharing
® solution: activity rule (Amazon) ® solution: tit-for-tat (BitTorrent)
(extend endtime after last bid) (no uploads = no downloads)
Email spam Showrooming in Search Markets
e solution 1: filtering e solution 1: parity clause?
® solution 2: micropayments ® solution 2: loyalty program?
e solution 3: proofs of work ® solution 3: paid placement?
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— Case Studies

Bid sniping in eBay Freeloading in P2P File Sharing
® solution: activity rule (Amazon) ® solution: tit-for-tat (BitTorrent)
(extend endtime after last bid) (no uploads = no downloads)
Email spam Showrooming in Search Markets
e solution 1: filtering e solution 1: parity clause?
® solution 2: micropayments ® solution 2: loyalty program?
e solution 3: proofs of work ® solution 3: paid placement?

Conclusion: incentive problems need incentive solutions.
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— Bid-sniping in eBay vs Amazon
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[Roth, Ockenfels, 2002]
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— Overview

1. single-item auction.
2. objectives: social welfare vs. seller profit.

3. applications:
e paid search
e retail: pricing vs. auctions,
e intermediation: fees versus double auctions

e competing platforms

AUCTION THEORY AND INTERNET — NOVEMBER 26, 2015 —



— Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:
e one item for sale.
e 1 bidders (with unknown private values for item, vy, ..., V)

e Bidders’ objective: maximize utility = value — price paid.

Design:

e Auction to solicit bids and choose winner and payments.
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— Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:
e one item for sale.
e 1 bidders (with unknown private values for item, vy, ..., V)

e Bidders’ objective: maximize utility = value — price paid.

Design:

e Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:
e Maximize social surplus, i.e., the value of the winner.

e Maximize seller profit, i.e., the payment of the winner.
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Obijective 1. maximize social surplus
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— Example: The Second-price Auction

Second-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.

3. Charge winner the second-
highest bid.
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— Example: The Second-price Auction

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

highest bid.

Example Input: b = (2,6,4, 1).
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— Example: The Second-price Auction

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

highest bid.

Example Input: b = (2,6,4, 1).

Questions:

3. Charge winner the second-

e what are equilibrium strategies?

e what is equilibrium outcome?

e which has higher surplus in equilibrium?

e which has higher profit in equilibrium?
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— Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder 2 bid?
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— Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder 7 bid?
® Letl;, = max;£; bj.

e If b; > t;, bidder ¢ wins and pays t;; otherwise loses.
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— Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder 2 bid?
® Letl;, = max;£; bj.
e If b; > t;, bidder ¢ wins and pays t;; otherwise loses.

Case 1: v; > {; Case 2: v; < {5

AUCTION THEORY AND INTERNET — NOVEMBER 26, 2015 —



— Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder 7 bid?
® Letl;, = max;£; bj.

e If b; > t;, bidder ¢ wins and pays t;; otherwise loses.

Case 1: v; > {; Case 2: v; < {5
A 2 A
v; —t; + M é +
0 -ﬁ —————— :) 0 -— — — —
E vi —t; H
5 ' > - ' ' —
t; Vg \2 Vit
Bid Value Bid Value
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— Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder 7 bid?
® Letl;, = max;£; bj.

e If b; > t;, bidder ¢ wins and pays t;; otherwise loses.

Case 1: v; > {; Case 2: v; < {5
A 2 A
v; —t; + M é +
0 -ﬁ —————— :) 0 -— — — —
E vi —t; H
5 + + + ¥ > ¥ ¥ + ¥ >
t; Vg \2 Vit
Bid Value Bid Value

Result: Bidder 7's dominant strategy is to bid b; = v;!
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— Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder 7z bid?
® Let{; = max,; b;j. < “critical value”

e If b; > t;, bidder ¢ wins and pays t;; otherwise loses.

Case 1: v; > {; Case 2: v; < {5
A 2 A
v; —t; + M é +
0 -ﬁ —————— :) 0 -— — — —
E vi —t; H
5 + + + ¥ > ¥ ¥ + ¥ >
t; Vg \2 Vit
Bid Value Bid Value

Result: Bidder 7's dominant strategy is to bid b; = v;!
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— Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.
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— Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in
Second-price Auction.
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— Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.
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— Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.
e bids = values (from Lemma).
e winner is highest bidder (by definition).

—> winner is bidder with highest valuation (optimal social surplus).
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— Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.
e bids = values (from Lemma).
e winner is highest bidder (by definition).
—> winner is bidder with highest valuation (optimal social surplus).

What about revenue?
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Obijective 2: maximize seller profit

(other objectives are similar)



— Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].
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— Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F'(z) = Pr[v < z] = 2.
Probability Density Function: f(z) = —=Pr[v < z] = 1.
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— Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F'(z) = Pr[v < z] = 2.

Probability Density Function: f(z) = —=Pr[v < z] = 1.

Order Statistics: in expectation, uniform random variables evenly
divide interval.
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— Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F'(z) = Pr[v < z] = 2.
Probability Density Function: f(z) = —=Pr[v < z] = 1.

Order Statistics: in expectation, uniform random variables evenly
divide interval.
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— An example

Example Scenario: two bidders, uniform values
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— An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?
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— An example

Example Scenario: two bidders, uniform values
What is profit of second-price auction?

e draw values from unit interval.
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— An example

Example Scenario: two bidders, uniform values
What is profit of second-price auction?

e draw values from unit interval.

e Sort values. Vo < V1
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— An example

Example Scenario: two bidders, uniform values
What is profit of second-price auction?

e draw values from unit interval.

e Sort values. Vo < V1

® |n expectation, values evenly divide unit interval.
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— An example

Example Scenario: two bidders, uniform values
What is profit of second-price auction?

e draw values from unit interval.

e Sort values. Vo < V1

® |n expectation, values evenly divide unit interval.

e E|Profit] = E|vs]
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— An example

Example Scenario: two bidders, uniform values
What is profit of second-price auction?

e draw values from unit interval.

e Sort values. vy < U
® |n expectation, values evenly divide unit interval.

e E[Profit] = E[vs] = 1/3.
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— An example

Example Scenario: two bidders, uniform values
What is profit of second-price auction?

e draw values from unit interval.

e Sort values. Vo < V1

® |n expectation, values evenly divide unit interval.
e E[Profit] = E[vs] = 1/3.

Can we get more profit?
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

1

What is profit of Second-price with reserve 3 on two bidders U0, 1]?
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 5 on two bidders U [0, 1]?

2
e draw values from unit interval.

e Sort values, v > U9
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

1

What is profit of Second-price with reserve 3 on two bidders U0, 1]?

e draw values from unit interval.
e Sort values, v > U9
Case Analysis: Pr[Case /] E [Profit]
Case 1: % > U1 > U9
Case 2: v > Uy > %
Case 3: v > % > U9
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 5 on two bidders U [0, 1]?

2
e draw values from unit interval.
e Sort values, v > U9
Case Analysis: Pr[Case /] E [Profit]
Case 1: % > U > Vs 1/4
Case2: v > vy > % 1/4
Case 3: v > % > Vo 1/2
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 5 on two bidders U [0, 1]?

2
e draw values from unit interval.
e Sort values, v > U9
Case Analysis: Pr[Case /] E [Profit]
Case 1: % > Uy > U 1/4 0
Case 2: U > vy > 2 1/4 Elvs | Case 2]
Case 3: v > % > Vo 1/2 %
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 5 on two bidders U|l0,1]?

2
e draw values from unit interval. | : 1 :
e Sortvalues, v = 19 0 V2 V1
Case Analysis: Pr[Case /] E [Profit]
Case 1: % > Uy > U 1/4 0
Case 2: U > vy > 2 1/4 E[v, | Case?2] = 2
Case 3: v > % > Vo 1/2 %
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve % on two bidders U0, 1]?

e draw values from unit interval. | ' :

0 bt
e Sortvalues, v = 19 V2 V1
Case Analysis: Pr[Case /] E [Profit]
Case 1: % > Uy > U 1/4 0
Case 2: v > vy > % 1/4 Elvs | Case?2] = %
Case 3: 1] > % > Uy 1/2 %
E[profit of 2nd-price with reserve] = i -0+ i % + % % = %
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— Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at . 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 5 on two bidders U [0, 1]?

2
e draw values from unit interval. | ' 1 :
0
e Sortvalues, v = 19 V2 V1
Case Analysis: Pr[Case /] E [Profit]
Case 1: % > Uy > U 1/4 0
Case 2: U > vy > 2 1/4 E[v, | Case?2] = 2
. 1 1
Case 3: Uy > 5 > o 1/2 5
E[profit of 2nd-price with reserve] = i -0+ i : % + % : % = %
> E[profit of 2nd-price] = 3.
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— Profit Maximization

Question: What auction maximizes profit?
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— Profit Maximization

Question: What auction maximizes profit?

Answer: second-price with reserve (for symmetric bidders)
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— Microeconomics 101

Question: how should monopolist divide good across separate
markets?
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— Microeconomics 101

Question: how should monopolist divide good across separate
markets?

Demand Model: concave revenue R(q) in quantity ¢
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— Microeconomics 101

Question: how should monopolist divide good across separate
markets?

Demand Model: concave revenue R(q) in quantity ¢

MRa(qa)
O O/_\l

AUCTION THEORY AND INTERNET — NOVEMBER 26, 2015 —



— Microeconomics 101

Question: how should monopolist divide good across separate
markets?

Demand Model: concave revenue R(q) in quantity ¢

MRa(qa) ARy (qn)
OO 1 OO 1
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— Microeconomics 101

Question: how should monopolist divide good across separate
markets?

Demand Model: concave revenue R(q) in quantity ¢

AR (qa) ARy (q) A Ri(qa); Ry ()
OO 1 OO 1 OO da 4b 1

Answer: divide supply ¢ = q, + qp
to equate marginal revenues R, (qq) = R (qp).
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]

Example: two bidders, uniform values |
e sorted value: V(q) =1 —q. h
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]

Example: two bidders, uniform values |
e sorted value: V(q) =1 —q. h

e revenue curve: from offering price V' (q).
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]

Example: two bidders, uniform values |
e sorted value: V(q) =1 —q. h

e revenue curve: from offering price V' (q).

= buys and pays V' (q) with probability q.
= R(qg)=q-V(g) =q— ¢
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]

Example: two bidders, uniform values |
e sorted value: V(q) =1 —q. h
e revenue curve: from offering price V' (q).
= buys and pays V' (q) with probability q. OT£;>|

= R(q)=q-V(¢) =q—¢*
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]

Example: two bidders, uniform values |
e sorted value: V(q) =1 —q. h
e revenue curve: from offering price V' (q).
= buys and pays V' (q) with probability q. 1@1

1/2 1
= R(q) =q-V(¢) =q—¢*

e marginal revenue: R'(q) = 1 — 2q.
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]

Example: two bidders, uniform values
e sorted value: V(q) =1 —q. h

e revenue curve: from offering price V' (q

= buys and pays V' (q) with probablllty q.

= R(q) =q-V(g) =q—¢* 1
e marginal revenue: R'(q) = 1 — 2q. \\
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts '89]

Example: two bidders, uniform values
e sorted value: V(q) =1 —q. h

e revenue curve: from offering price V' (q

= buys and pays V' (q) with probablllty q. T£;>|
= R(q)=q-V(g)=q—-¢ 1
e marginal revenue: R'(q) = 1 — 2q. \\

e Maximize “maginal revenue”

= sell to bidder ¢ with highest positive R’ (q; ).
= sell to bidder ¢ with highest value at least 1/2.
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts '89]

Example: two bidders, uniform values
e sorted value: V(q) =1 —q. h

e revenue curve: from offering price V' (q

= buys and pays V' (q) with probablllty q. T£;>|
= R(q)=q-V(g)=q—-¢ 1
e marginal revenue: R'(q) = 1 — 2q. \\

e Maximize “maginal revenue”

= sell to bidder ¢ with highest positive R’ (q; ).
= sell to bidder ¢ with highest value at least 1/2.

= second-price auction with reserve 1/2.
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— Example: two bidders, uniform values

Theorem: optimal auction maximizes “marginal revenue”.
[Myerson '81; Bulow, Roberts "89]

Example: two bidders, uniform values
e sorted value: V(q) =1 —q. h

e revenue curve: from offering price V' (q

= buys and pays V' (q) with probablllty q. T£;>|
= R(q)=q-V(g)=q—-¢ 1
e marginal revenue: R'(q) = 1 — 2q. \\

e Maximize “maginal revenue”

= sell to bidder ¢ with highest positive R’ (q; ).
= sell to bidder ¢ with highest value at least 1/2.

= second-price auction with reserve 1/2.

Corollary: for symmetric bidders, second-price w. reserve is optimal.
[Myerson '81]
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— Optimal Auction Observations

Observations:
® single auction maximizes surplus (for any distribution).
e pretending to value the good increases seller profit.

e which mechanism has better profit depends on distribution.
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— Optimal Auction Observations

Observations:
® single auction maximizes surplus (for any distribution).
e pretending to value the good increases seller profit.

e which mechanism has better profit depends on distribution.

Questions?
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— Applications

1. paid search
(e.g., Google ads)

2. retall: auctions vs. pricing
(e.g., eBay Auctions vs. Buy it Now)

3. intermediation: double auctions vs. fee on sale.
(e.g., real estate, eBay, Booking.com)

4. competing platforms (e.g., Google ads vs. Bing ads)
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—

Paid Search

®@0e 7 saar::h advertising - Gooo = '-.:_-saamh ﬂm_;{m marketing -k et | You
& — C | nttps://www.google.com/webhp?sourceid=chrome-instant&ion=18&espv=28ie=UTF-B#q=search%20advertising Ay =

GO g[e search advertising

AUCTION THEORY AND INTERNET — NOVEMBER 26, 2015
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About 823,000,000 results (0.39 seconds)
Bing Online Advertising - Grow Your Business & Stand Out ®

bingads.microsoft.com/Advertising ~ (800) 518-5689
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Get Staried Today
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Search advertising - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Search_advertising ~ Wikipedia -

In Internet Marketing, Search Advertising is a method of placing online advertisements
on Web pages that show results from search engine gqueries. Through the ...

Qrigins - Keywords - Metrics - Campaign Management

Search Advertising: Management Tools for Internet Marketers
ww.wordstream.mm!saarch—advartising =

Search advertising is all about selecting the right keywords. Learn more about
advertising with search engines and PPC search engine advertising.

¢ K.

vason 3 © ®

®

Search Engine Marketing
www.google.com/AdWords ~
Bring new visitors fo your website.
Place Your Ad on Google Today!

Better PPC Advertising
www.advertise.com/ ~

Stop Losing Money on Search Ads.
Low Cost. Top ROL. Quality Traffic.

Hire Search Advertisers
www.odesk.com/Search-Advertiser ~
Reach People. Grow Your Business.
Post Jobs in Minutes! Compare Bids.

AD Search Tool
www.netwrix.com/go/auditor_ad ~
Get Reported & Alerted In Real Time
— Track All Critical Changesl!

Don't Sign Up For AdWords
www.jumpfly.com/Google-AdWords ~
Before You Check Out JumpFly.
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Rank ads by bid X click-through-rate.

= =

Charge advertiser minimum bid to maintain position if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.
Reserve Optimization: [Ostrovsky, Schwarz "11]

e |earn distribution family: log-normal.
(Note: bids # values, must use econometrics)

e estimate distribution parameters for each keyword.

e compute optimal price from estimated distribution.
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— Generalized Second Price Auction

Generalized Second Price Auction [Google '02]
A user issues a query.

Find all ads matching query terms and exceed reserve.

Rank ads by bid X click-through-rate.

= =

Charge advertiser minimum bid to maintain position if user clicks on ad.

Note: GSP optimal if reserve is chosen for distribution.
Reserve Optimization: [Ostrovsky, Schwarz "11]

e |earn distribution family: log-normal.
(Note: bids # values, must use econometrics)

e estimate distribution parameters for each keyword.
e compute optimal price from estimated distribution.

Conclusion: improved Yahoo!’s revenue by 5-10 percent (billions!)
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— Retall: Auctions vs. Pricing

Auctions
Pros:

® optimal.
Cons:
e centralized.
e complex for buyers.

e slow, delayed.

AUCTION THEORY AND INTERNET — NOVEMBER 26, 2015

Pricing
Cons:
® non-optimal.
Pros:
e decentralized.
® simple for buyers.

e fast, immediate.
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— Retall: Auctions vs. Pricing

Auctions Pricing
Pros: Cons:
® optimal. ® non-optimal.
Cons: Pros:
e centralized. e decentralized.
e complex for buyers. e simple for buyers.
e slow, delayed. e fast, iImmediate.

Theorem: for pricing k units: loss at most 1/+/ 27k of optimal.
(e.g., k = 1: 37%; k = 10: 13%; k£ = 100: 4% in the worst case!)
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— Intermediation (w. revenue maximization)

Double Auctions Fee on sale
® buyer and seller bid.
e trade if “marg. rev. > marg. loss”

® buyer pays “critical value”; seller
receives “critical cost”; broker
keeps difference.
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— Intermediation (w. revenue maximization)

Double Auctions Fee on sale
® buyer and seller bid. ® seller posts price
e trade if “marg. rev. > marg. loss” ® buyer takes it or leaves it.

® buyer pays “critical value”; seller e seller pays fee to broker.
receives “critical cost”; broker
keeps difference.

Pros: Cons:
® optimal. e usually non-optimal.
Cons: Pros:
e centralized. e decentralized.
e complex for buyers. e simple for buyers.
e slow, delayed. e fast, iImmediate.
e budget imbalance. e budget balance.

Theorem: fee on sale is sometimes optimal; usually close to optimal.
[Loertscher, Niedermayer 2011]
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— Duopoly Platform Design

Recall: optimal auction is second-price with reserve (for monopolist).

Question: what about competition between two platforms?
(bidders may choose to go to competing platform)
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— Duopoly Platform Design

Recall: optimal auction is second-price with reserve (for monopolist).

Question: what about competition between two platforms?
(bidders may choose to go to competing platform)

Related Results: Revenue of second-price auction:

e no reserve and n bidder > optimal reserve and n — 1 bidders.
[Bulow, Klemperer '96]
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— Duopoly Platform Design

Recall: optimal auction is second-price with reserve (for monopolist).

Question: what about competition between two platforms?
(bidders may choose to go to competing platform)

Related Results: Revenue of second-price auction:
e no reserve and n bidder > optimal reserve and n — 1 bidders.

[Bulow, Klemperer '96]
® Wwith entry cost, no reserve is optimal.[McAfee, McMillan '87]
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— Example: Google ads vs. Bing ads

Recall: how should monopolist divide good across separate markets?
Demand Model: concave revenue R(q) in quantity ¢

ARa(qa) % A Ri(qa), Ry (gn)
o/\ 0 0

0 1 0 1 0 qa Qb 1

Answer: divide supply ¢ = q4 + Qb
to equate marginal revenues R, (q,) = R, (qp)-
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— Example: Google ads vs. Bing ads

Recall: how should monopolist divide good across separate markets?
Demand Model: concave revenue R(q) in quantity ¢

AR (qa) ARy (qn) A R;(qa)a Rg(Qb)
% 9% 1 % e a 1

Answer: divide supply ¢ = q4 + Qb
to equate marginal revenues R, (q,) = R, (qp)-

Related Question: How should advertiser divide budget across Bing
and Google?
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— Example: Google ads vs. Bing ads

Recall: how should monopolist divide good across separate markets?
Demand Model: concave revenue R(q) in quantity ¢

AR (qa) ARy (qn) A R;(qa)a Rg(Qb)
% 9% 1 % e a 1

Answer: divide supply ¢ = q4 + Qb
to equate marginal revenues R, (q,) = R, (qp)-

Related Question: How should advertiser divide budget across Bing
and Google?

Answer: The same.
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— Should Bing Raise Prices”

AUCTION THEORY AND INTERNET — NOVEMBER 26, 2015 —



. . o
— Should Bing Raise Prices”

Question: what if a increases ad prices?
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NN

0 P, P, B

Question: what if a increases ad prices?
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. . o
— Should Bing Raise Prices”

NN

0 P, P, B

Question: what if a increases ad prices?

Answer: advertisers moves spend from a to b.
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— Conclusions

1. single-item auction.
2. objectives: social welfare vs. seller profit.

3. applications:
e paid search
e retail: pricing vs. auctions,
e intermediation: fees versus double auctions

e competing platforms
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— Conclusions

1. single-item auction.
2. objectives: social welfare vs. seller profit.

3. applications:
e paid search
e retail: pricing vs. auctions,
e intermediation: fees versus double auctions

e competing platforms

Questions?
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The classroom as a “computer”:
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e grader/instructor: imprecise operators

e syllabus: rules that map actions to grades

e student incentives: minimize work, maximize grade

e goal: minimize work, maximize learning, fairly assess
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A Peer Grading Story

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!
3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules



Peer grading system:

e Canvas plugin (https://www.peerpal.io/)

e used in “Intro to CS”, “Intro to Algorithms”,
“Intro to Online Markets”, “Mechanism Design”, etc.
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Peer grading system:

e Canvas plugin (https://www.peerpal.io/)

e used in “Intro to CS”, “Intro to Algorithms”,
“Intro to Online Markets”, “Mechanism Design”, etc.

Main Algorithms:

e matching peers and TAs to submissions
e grading submissions from peer reviews

e grading peer reviews from TA reviews


https://www.peerpal.io/
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Advantages of Peer Grading

Advantages of Peer Grading: (observations from Intro to Algs)

e learning by reviewing.
(learn material: 60% agree; learn to write better: 55% agree
(worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

e reduces teacher grading.
(TAs graded 1/5 of student work.)

e promptness of feedback.
(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...
(3.7% appeal rate; 1-6% strongly disagree with survey questions)
Main Challenge: incentivizing accurate peer reviews.

(i.e., “grading the grading”)
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Grading Peer Reviews

Example Scenario:

e 100 students
e submit homeworks in pairs = 50 submissions.
e cach review three submissions = 300 peer reviews.

e need to grade: 50 submissions, 300 peer reviews.
Approach:

pick 10 submissions for TA to review.

assign each peer 1 of these 10 submissions at random to review.

assign each peer 2 of remaining 40 submissions at random to review.

> PP F

grade Step 2 peer reviews against TA review. (don't grade other reviews)

Remaining challenge: grading peer reviews from TA review.

Idea: use proper scoring rule!



A Peer Grading Story

2. Grading peer reviews with proper scoring rules is horrible!
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Grading Review with Proper Scoring Rule
e TA score 0 € [0,1] (truth)
o Peer belief 11 € [0,1]; peer report r € [0, 1]
e quadratic scoring rule: S(r,0) =1 — (0 — r)?

Example
e peer report r = 0.8
e TA report 0 = 0.3

— 2 _
o (if multiple rubric elements, average across rubric) e score 5(r,0) = 105" =0.75

Theorem u(r)
Reporting r = 1 is optimal for peer. 1

Proof.
eletu(r)=1—r+r?
e algebra = can rewrite as:
S(r,0) = u(r)+ u'(r) (0 —r) + k(0).
e report cannot affect s (so ignore it)

e let supporting tangent at r be:
he(0) = u(r) + ' (r)(0 —r) ; —




Proper Scoring Rules

Grading Review with Proper Scoring Rule
e TA score 0 € [0,1] (truth)
o Peer belief 11 € [0,1]; peer report r € [0, 1]
e quadratic scoring rule: S(r,0) =1 — (0 — r)?

Example
e peer report r = 0.8
e TA report 0 = 0.3

— 2 _
o (if multiple rubric elements, average across rubric) e score 5(r,0) = 105" =0.75

Theorem u(r)
Reporting r = 1 is optimal for peer. 1

Proof.
eletu(r)=1—r+r?
e algebra = can rewrite as:
S(r,0) = u(r)+ u'(r) (0 — r) + K(0).

e report cannot affect s (so ignore it)

let supporting tangent at r be:

he(0) = u(r) + u'(r)(0 —r) p r -

e loss from report r at belief p: u(p) — he(p). O
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Standard Scoring Rules are Horrible

The Lazy Peer Strategy
e assume: TA grade ¢ € [0.6,1]
e strategy: always report r = 0.8

e S(r,0) >1—(0.2)>=0.96

Result
Very little incentive for effort!



A Peer Grading Story

3. (Quick fix: Manually grade the peer reviews.)

10



Review Grading By Hand

Submission 42

contents of submission

Peer 1 Peer 2 Peer 3 TA Score  TA Comment
Algorithm 8* 9* 10 9 et el
Correctness 5% ™ 10 6 missing base case
Clarity 8* 8* 10 8
Quantitative 9 10 5
Qualitative 8 8 0
Feedback see TA review  see TA review  TUSt Provide

detailed revie

11



A Peer Grading Story

4. Optimization of scoring rules.
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Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
e peers choose effort or no effort
e maximize: difference in score for effort vs no effort

e subject to: proper and bounded scoring rule.
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Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
MaXscoring rule Estate, belief with effort [SCOre with effort — score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)

scoring rule is bounded

Theorem
optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

score

(standard scoring rules like quadratic not approx optimal)

Theorem
approximately optimal multi-dimensional scoring rule: 0 0

maximum over optimal separate scoring rules 0 prior mean 1

(average of separate scoring rules not approx optimal) state

13
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Theorem
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Single-dimensional Optimal Scoring Rules

Theorem
optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state 1

Proof.
e consider ex post bounded scoring rule defined
by convex u
o replace u(r) with V-shape at fiprior

e objective E[u(fposterior) — U(ftprior)] weakly
increased:

o u(Lposterior) Weakly increased.
o u(ftprior) is unchanged.

‘ ‘
Iprior 1
e score for extremal reports weakly less extreme

e still ex post bounded. O
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A Peer Grading Story

5. Fundamental Role of Scoring Rules
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A Value of Data (via “Revelation Principle”)

analysis of dataset ——— decision optimization ———> payoff from decision
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A Value of Data (via “Revelation Principle”)

analysis of dataset

Interpretations

b decision optimization ——— payoff from decision

proper scoring rule

e scoring rules are fundamental for understanding good data analyses

e optimal scoring rules for binary effort = setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

Rational agent Rational agent
Density 25¢4 58 mAﬂov\(im prior N :im posterior
. . g . . . Mean 24% 27% 42% v
e researcher shows behavioral subjects different visual stimuli. om0 27 500 | A A=l
— ' ! -PoSreports
e measure performance in decision problem (a.k.a., scoring rule). e 1o 2a 3 0 A A Lo
Nomean 15% 27% 33% 1 A/ aa : N s
e benchmark against rational agent with and without stimuli. Intervals L N
Mean 32% 25% 44% i 1 Behavioral
Nomean 35% 26% 41% A AAk- + agent
' ! -action reports
QDPs. , ,
Mean 40% 33% 31% | A Md
Nomean 40% 33% 27% A AL

Scores® 3 g i 16



Mechanism Design for the Classroom

The classroom as a “computer”:

e students: local optimizers

e grader/instructor: imprecise operators

e syllabus: rules that map actions to grades

e student incentives: minimize work, maximize grade

e goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:
e grading randomized exams: ex post fairness?
e grading with partial credit: incentivizing precise answers?
e group projects: incentivizing teamwork?
e peer grading: incentives for accurate peer reviews?

17



Related Work

Related Work:

e characterizing scoring rules:

e eliciting full distribution
e eliciting the mean
e set of elicitable properties (e.g., variance is not directly elicitable)
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e maximize effort with quadratic scoring rules

e maximize effort in a binary state model with costly samples

framework adopted by follow-up works:

optimizing max-min objective without knowledge about prior and signal
optimization of peer prediction mechanisms

bounded expected score

maximizing effort under multi-dimensional effort model

benchmark for visualization experiments

e ex post value of information
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