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Using paired comparison data



Basic definitions

Given a set of objects {1, ..., n}, denote by Yl-j the binary random
variable associated with the result of a paired comparison between i
and j, taking value 1 if i is preferred to j and 0 otherwise.

Denote by 7;; the corresponding probability that i is preferred to j by a
random subject.



Notional worths and choice probability

Many traditional paired preference models are formulated with the
assumption that 7;; depends only on the difference between the
“notional worths” (or utility values) of objects i and j.

That is, denoting these “notional worths” by a vector u, we have
mij = F(u — 1)

for some cumulative distribution function F of a zero-symmetric

random variable.



Why might this make sense?

Suppose that, when prompted to make a comparison between objects,
a subject’s utility from each is given by their notional worths, up to a
random error term. So
Usi = 1 + 0g;
Usj = Uj-
Assume that the dg;; are i.i.d. Then
P(Usi 2 Us;) = F(p — 1)

where F is the c.d.f. of the distribution from which the dg;; are drawn.



Bradley-Terry example

If we make our assumption that

mij = F(u; — pj),
and take F to be the c.d.f. of the logistic distribution centered at 0, we
recover the Bradley-Terry model.




Practical application

1 X 2
London Paris 186 26 91
London Milan 221 26 56
Paris Milan 121 32 59
London St. Gallen 208 22 73
Paris St. Gallen 165 19 119
Milan St. Gallen 135 28 140
London Barcelona 2L 19 67
Paris Barcelona 157 37 109
Milan Barcelona 104 67 132
St. Gallen Barcelona 144 25 134
London Stockholm 250 19 34
Paris Stockholm 203 30 70
Milan Stockholm 57 46 100

1
St. Gallen Stockholm 155 50 08
Barcelona Stockholm 172 41 90




Estimation

One way to estimate u is by MLE. Denote by n the number of subjects
and by x;; the number of responses where object i was preferred to

object j.
Optimization problem:
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Results

Thurstone cumulative Thurstone
Est. S.E. Q.S.E. Est. S.E. Q.S.E.
Barcelona 0.333 0.043 0.030 0.332 0.041 0.028
London 0.982 0.045 0.033 0.998 0.043 0.031
Milan 0.240 0.044 0.031 0.241 0.041 0.029
Paris 0.561 0.044 0.031 0.566 0.042 0.030
St. Gallen 0.325 0.043 0.030 0.324 0.040 0.028
Stockholm 0 - 0.031 0 ~ 0.029
T = — - 0.153 0.007 -




Alternative approach

* Instead of estimating separate worths for each object, assume some
structural relationship between object attributes and worth

* E.g., take u; = Bz;, estimate (8 instead of p.

Est. S.E.
Economics 0.757 0.066
Management 0.789 0.080
Latin country —0.835 0.071
Discipline:Management 0.238 0.054
English:London 0.141 0.075
French:Paris 0.652 0.049
Italian:Milan 1.004 0.094
Spanish:Barcelona 0.831 0.095

T2 0.160 0.007




Quick Primer on RL



Notations

» s € § = state/observation of the world (e.g. object and robot positions/pose)

» a € A = actions taken by the agent (e.g. motor torques at low level, turn steering
left/right, take route A vs route B to airport etc.)

» P(s'|s,a) = dynamics of the world
» r(s,a) = immediate reward for choosing action a in state s

» m(als) = policy or decision making rule — tells us what to do in every state. The
optimization problem of interest is find (r: = r(st, at)):

m*(als) = argmax,E [ro +vn +7r + .. ]

Goal: find “near-optimal” policy 7*(als) which maximizes the long term reward.



» Q™(s,a): a function that summarizes long term reward for choosing a in s.
Future actions will be taken according to policy .

QW(S’a) = IE‘:atw7r(.|st) [rO T T ')’2"2 A | So = S,ap = a]

> V7(s) = E,ur(|s)@(s,a) summarizes how good a state is under current policy
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The IRL debate: how can we
handle suboptimal demos?

[Amodei et al, 2017], [Krakovna, 2018]
[Reward functions often have unintended consequences ’

[Russell, 1998], [Ng et al, 2000], [Abbeel and Ng, 2004]

We can use inverse reinforcement learning (IRL)!
<Too many papers to cite> ‘

[But humans are not optimal planners... ] [Ziebart et al, 2008]

Let’s model the human as noisily rational



The IRL debate: how can we
handle suboptimal demos?

[Ziebart et al, 2008]

[Christiano, 2015] Let’s model the human as noisily rational

Then you are limited to human performance, since
you don’t know how the human made a mistake

[Majumdar et al, 2017]
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@ﬁn - Hyperbolic time discounting
SLIe - Sparse noise

E. — - Risk sensitivity

Er{(gls) 1o e.BQ(S,a,'r)J [Evans et al/ 2016]/ [Zheng et al, 2014],

We can model human biases:




[Steinhardt and Evans, 2017]

‘ Your human model will inevitably be misspecified ]

Hmm, maybe we can learn the
systematic biases from data?
Then we could correct for these

biases during IRL

[Armstrong and Mindermann, 2017]

[That’s impossible without additional assumptions J

[Evans et al, 2016], [Zheng et al, 2014],
[Majumdar et al, 2017]

We can model human biases:
Myopia
Hyperbolic time discounting

Sparse noise
Risk sensitivity



Are minimal assumptions enough?

Learning a policy /—D We need to learn /w\' 0 i
isn’t enough to learn .o’ —a the planner that o .’ =
systematic biases = produces the policy "~

a



Why learn the model?

If we knew f(s¢,a;) = s¢+1, we could use the tools from last week.
(or p(s¢+1]st,a;) in the stochastic case)

So let’s learn f(s¢, a;) from data, and then plan through it!

model-based reinforcement learning version 0.5:
1. run base policy my(at|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y, || f(si, a;) — s}/

3. plan through f(s,a) to choose actions



every N steps

Can we do better?
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model-based reinforcement learning version 1.5:

L

L
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run base policy mp(az|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
learn dynamics model f(s,a) to minimize Y, || f(s;,a;) — s}||?
plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

. append (s, a,s’) to dataset D
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Algorithm 1: Some known rewards

1. On tasks with known rewards,
learn the planner

2. Freeze the planner and learn the
reward on remaining tasks

Algorithm 2: "Near” optimal

1. Use Algorithm 1 to mimic a
simulated optimal agent

2. Finetune planner and reward
jointly on human demonstrations




We created five simulated human biases, along with noisy variants:

Optimal Naive Sophisticated Overconfident Underconfident Myopic
Ty, Y, Y Y Y
= s g = -
R RE
7 7 7 7 - 7 - 7 7
R R R R R
/% %é%%% gé% g %%%?//%%
- . ﬂ / W/
7 7 g 2 A; 7 g 2 4/% %7 Z %7

Baselines: IRL using a learned optimal or Boltzmann human model.

For each algorithm (Optimal /Boltzmann/Alg 1/ Alg 2) and bias, we:
1. Generate many environments and policies and run the algorithm
2. Optimize the inferred reward using value iteration to get a policy
3. Measure the policy’s value, as a fraction of the optimal policy’s value



1 Optimal

mm Boltzmann
mmm Known rewards
I “Near” optimal
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Assuming perfect optimality works
/ well when the human is not noisy

Optimal Naive Sophisticated Overconfident Underconfident Myopic

Our algorithms approximately match the
best of optimality and Boltzmann rationality

Boltzmann B-Naive B-Sophisticated B-Overconfident  B-Underconfident B-Myopic
k Boltzmann rationality shines

when the human is stochastic



what types of human feedback can we leverage?

Preferences!

exp (B -1(€a))

PEAlr D) = o B r€n) +exp (B 1(2))




what types of human feedback can we leverage?

E-stops (counterfactual reasoning) Pl &7 8) = Texp(,B -7 (o:t)) .
o k=0 €xP(8 - (&o:x))

Expert trajectory
Learned Policy
—
cccsirooe.,.
. .:::.._\\‘ — \'-,...
No data on / '

how to recover i} ("-._I




what types of human feedback can we leverage?

Demonstrations

1403

FBY = H mg(at | st)
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where Q3°(s,a | r) = r(s,a) + VEg[V4(s')], and
Vol (s) = Eqnn, [Q5°"(s,a) — logma(a | s)] are the soft
Q-function, and Value function, respectively (Kitani et al.
2012; Haarnoja et al. 2017), and 7 1s the corresponding
(time-dependent) policy.



What about when we have multiple preference criteria?

Policy A Policy B

(multi-criteria) Which of Policy A or Policy B is more comfortable?
is less aggressive?
is more risk-averse?



What about when we have multiple preference criteria?

Complex real-world problems are multi-criteria.

Uni-criterion framework are insufficient to model these complexities
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Multi-criteria Preference Learning

- @ )

[ | |
| ] |

P 6 [(). l]dxdxk
Preference Tensor

P(i;,12:j) = Prob(Pol iy, > Pol i, along criteria j)

Objective: Given such pairwise
comparisons, which is the best policy?
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Multi-criteria Preference Learning

- @
P(i),12:j) = Prob(Pol iy > Pol iy along criteria j)
Objective: Given such pairwise
comparisons, which is the best policy?
P € [0,1]9%¢

Preference Matrix

S NSRS Winner A randomized policy which is
(ini-critstion setip) preferred over every other policy
P by more than 50% of population



What is a natural generalization of
von Neumann’'s minimax theorem
for vector-valued zero-sum games?

David Blackwell

L

Spe

04 '
Comfort

Proposed notion of Target Set

Blackwell Winner: Randomized policy which “best” trades-off
the criteria according to user-specified target sets.
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