Metric Elicitation

Bidipta Sarkar, Tanvi Deshpande

October 16, 2023

Bidipta Sarkar, Tanvi Deshpande

Metric Elicitation

October 16, 2023

- In binary classification problems, want to select appropriate performance metric
- Metric elicitation: goal is to discover the performance metric of a practitioner, reflects rewards/costs for correct/incorrect classification

Bidipta Sarkar, Tanvi Deshpande

¹Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, and Oluwasanmi Koyejo. Performance Metric Elicitation from Pairwise Classifier Comparisons. In AISTATS, 2019.

- In binary classification problems, want to select appropriate performance metric
- Metric elicitation: goal is to discover the performance metric of a practitioner, reflects rewards/costs for correct/incorrect classification

Example

Tradeoffs made in medical contexts such as diagnoses or treatment

Bidipta Sarkar, Tanvi Deshpande

¹Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, and Oluwasanmi Koyejo. Performance Metric Elicitation from Pairwise Classifier Comparisons. In AISTATS, 2019.

- In binary classification problems, want to select appropriate performance metric
- Metric elicitation: goal is to discover the performance metric of a practitioner, reflects rewards/costs for correct/incorrect classification

Example

Tradeoffs made in medical contexts such as diagnoses or treatment

- Rather than menu of a few default choices, devise a metric that best matches the preferences of the practitioners/users with pairwise comparisons
- Minimize amount of feedback needed from "oracle"

Bidipta Sarkar, Tanvi Deshpande

¹Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, and Oluwasanmi Koyejo. Performance Metric Elicitation from Pairwise Classifier Comparisons. In AISTATS, 2019.

- $\bullet\,$ Humans are bad at providing absolute feedback \rightarrow pairwise comparison
- Confusion matrices
 - Accurately capture binary metrics such as accuracy, F_{β} , Jaccard similarity
- Use binary-search procedures to come close to the oracle's performance metric
- Linear performance metrics, linear-fractional performance metrics

Notation

- $X \in \mathcal{X}$ is input RV
- $Y \in \{0,1\}$ is output RV
- Dataset of size *n* denoted by $\{(x, y)_i\}_{i=1}^n$ generated iid from $\mathbb{P}(X, Y)$

•
$$\eta(\vec{x}) = \mathbb{P}(Y = 1 | X = x)$$

- $\zeta = \mathbb{P}(Y = 1)$
- Set of all classifiers: $\mathcal{H} = \{h : \mathcal{X} \to \{0,1\}\}$
- Confusion matrix for h is $\mathsf{C}(h,\mathbb{P})\in\mathbb{R}^{2 imes 2}$
 - $C_{ij}(h,\mathbb{P}) = \mathbb{P}(Y = i, h = j)$ for $i, j \in \{0,1\}$
 - TN, FN, TP, FP

Notation

- $X \in \mathcal{X}$ is input RV
- $Y \in \{0,1\}$ is output RV
- Dataset of size *n* denoted by $\{(x, y)_i\}_{i=1}^n$ generated iid from $\mathbb{P}(X, Y)$

•
$$\eta(\vec{x}) = \mathbb{P}(Y = 1 | X = x)$$

- $\zeta = \mathbb{P}(Y = 1)$
- Set of all classifiers: $\mathcal{H} = \{h : \mathcal{X} \to \{0, 1\}\}$
- Confusion matrix for h is $C(h, \mathbb{P}) \in \mathbb{R}^{2 \times 2}$
 - $C_{ij}(h,\mathbb{P}) = \mathbb{P}(Y = i, h = j)$ for $i, j \in \{0,1\}$
 - TN, FN, TP, FP
- $FN(h, \mathbb{P}) = \zeta TP(h, \mathbb{P})$ and $FP(h, \mathbb{P}) = 1 \zeta TN(h, \mathbb{P})$
 - Reduces 4-dimensional space to 2-dimensional space

Notation

- $X \in \mathcal{X}$ is input RV
- $Y \in \{0,1\}$ is output RV
- Dataset of size *n* denoted by $\{(x, y)_i\}_{i=1}^n$ generated iid from $\mathbb{P}(X, Y)$

•
$$\eta(\vec{x}) = \mathbb{P}(Y = 1 | X = x)$$

- $\zeta = \mathbb{P}(Y = 1)$
- Set of all classifiers: $\mathcal{H} = \{h : \mathcal{X} \to \{0, 1\}\}$
- Confusion matrix for h is $C(h, \mathbb{P}) \in \mathbb{R}^{2 \times 2}$
 - $C_{ij}(h,\mathbb{P}) = \mathbb{P}(Y = i, h = j)$ for $i, j \in \{0,1\}$
 - TN, FN, TP, FP
- $FN(h, \mathbb{P}) = \zeta TP(h, \mathbb{P})$ and $FP(h, \mathbb{P}) = 1 \zeta TN(h, \mathbb{P})$
 - Reduces 4-dimensional space to 2-dimensional space
- Any hyperplane (line) in (tp, tn) given by $\ell := a \cdot tp + b \cdot tn = c$; $a, b, c \in \mathbb{R}$
- $\phi: [0,1]^{2\times 2} \to \mathbb{R}$ is the performance metric for a classifier *h*, determined by C(h)

Linear Performance Metric (LPM): φ_{LPM}

Given constants $\{a_{11}, a_{01}, a_{10}, a_{00}\} \in \mathbb{R}^4$, we define ϕ as:

$$\phi(C) = a_{11}TP + a_{01}FP + a_{10}FN + a_{00}TN$$
$$= m_{11}TP + m_{00}TN + m_{0}$$
where $m_{11} = (a_{11} - a_{10}), m_{00} = (a_{00} - a_{01}), \text{ and } m_{0} = a_{10}\zeta + a_{01}(1 - \zeta).$

w

3

Linear Performance Metric (LPM): φ_{LPM}

Given constants $\{a_{11}, a_{01}, a_{10}, a_{00}\} \in \mathbb{R}^4$, we define ϕ as:

$$\phi(C) = a_{11}TP + a_{01}FP + a_{10}FN + a_{00}TN$$
$$= m_{11}TP + m_{00}TN + m_{0}$$
here $m_{11} = (a_{11} - a_{10}), m_{00} = (a_{00} - a_{01}), \text{ and } m_{0} = a_{10}\zeta + a_{01}(1 - \zeta).$

• Ex. Weighted accuracy: $WA = a_1 TP + a_2 TN$

wł

3

Linear-Fractional Performance Metric (LFPM): : φ_{LFPM}

Given constants $\{a_{11}, a_{01}, a_{10}, a_{00}, b_{11}, b_{01}, b_{10}, b_{00}\} \in \mathbb{R}^8$, we define ϕ as:

$$\begin{split} \phi(C) &= \frac{a_{11}TP + a_{01}FP + a_{10}FN + a_{00}TN}{b_{11}TP + b_{01}FP + b_{10}FN + b_{00}TN} \\ &= \frac{p_{11}TP + p_{00}TN + p_{0}}{q_{11}TP + q_{00}TN + q_{0}} \end{split}$$

where $p_{11} = (a_{11} - a_{10}), p_{00} = (a_{00} - a_{01}), q_{11} = (b_{11} - b_{10}), q_{00} = (b_{00} - b_{01}), p_{0} = a_{10}\zeta + a_{01}(1 - \zeta), q_{0} = b_{10}\zeta + b_{01}(1 - \zeta). \end{split}$

 $q_0 =$

Linear-Fractional Performance Metric (LFPM): : φ_{LFPM}

Given constants $\{a_{11}, a_{01}, a_{10}, a_{00}, b_{11}, b_{01}, b_{10}, b_{00}\} \in \mathbb{R}^8$, we define ϕ as:

$$\begin{split} \phi(C) &= \frac{a_{11}TP + a_{01}FP + a_{10}FN + a_{00}TN}{b_{11}TP + b_{01}FP + b_{10}FN + b_{00}TN} \\ &= \frac{p_{11}TP + p_{00}TN + p_{0}}{q_{11}TP + q_{00}TN + q_{0}} \end{split}$$

where $p_{11} = (a_{11} - a_{10}), p_{00} = (a_{00} - a_{01}), q_{11} = (b_{11} - b_{10}), q_{00} = (b_{00} - b_{01}), p_{0} = a_{10}\zeta + a_{01}(1 - \zeta), q_{0} = b_{10}\zeta + b_{01}(1 - \zeta). \end{split}$

• Ex.
$$F_{\beta} = \frac{TP}{\frac{TP}{1+\beta^2} - \frac{TN}{1+\beta^2} + \frac{\beta^2 \zeta + 1 - \zeta}{1+\beta^2}}, JAC = \frac{TP}{1 - TN}$$

Bidipta Sarkar, Tanvi Deshpande

 (b_{11}) $q_0 =$

Bayes Optimal/Inverse-Optimal Classifiers

- Given performance metric ϕ :
 - Bayes utility $\overline{\tau}$: $\underline{\tau} = \sup_{h \in \mathcal{H}} \phi(C(h)) = \sup_{C \in \mathcal{C}} \phi(C)$
 - Bayes classifier \bar{h} (when it exists): \bar{h} = arg max_{$h \in \mathcal{H}$} $\phi(C(h))$.
 - Bayes confusion matrix is given by $\overline{C} = \arg \max_{C \in C} \phi(C)$
- Inverse Bayes utility/classifier/CM: replace all sup with inf

Proposition 1

Let $\phi \in \varphi_{LPM}$. Then

$$\bar{h}(x) = \begin{cases} \mathbb{1} \begin{bmatrix} \eta(x) \ge \frac{m_{00}}{m_{11} + m_{00}} \\ \mathbb{1} \begin{bmatrix} \frac{m_{00}}{m_{11} + m_{00}} \ge \eta(x) \end{bmatrix}, & m_{11} + m_{00} \ge 0 \\ \dots & \dots & 0 \end{cases}$$

is a Bayes optimal classifier w.r.t $\phi.$ The inverse Bayes classifier is given by $\underline{h}=1-\bar{h}.$

• Oracle queries: Given two classifiers (CMs) h, h' (C, C'), we have $\Gamma(h, h') = \Omega(C, C') = \mathbb{1}[\phi(C) > \phi(C')] =: \mathbb{1}[C \succ C']$

Metric Elicitation (Population)

Suppose the true (oracle) performance metric is ϕ . Recover a metric $\hat{\phi}$ by querying the oracle for as few pairwise comparisons of the form $\Omega(C, C')$, such that $\|\phi - \hat{\phi}\|_{--} < \kappa$ for sufficiently small $\mathbb{R} \ni \kappa > 0$ and for any suitable norm $\|\cdot\|_{--}$.

• Oracle queries: Given two classifiers (CMs) h, h' (C, C'), we have $\Gamma(h, h') = \Omega(C, C') = \mathbb{1}[\phi(C) > \phi(C')] =: \mathbb{1}[C \succ C']$

Metric Elicitation (Samples: $\{(x_i, y_i)\}_{i=1}^n$)

Suppose the true (oracle) performance metric is ϕ . Recover a metric $\hat{\phi}$ by querying the oracle for as few pairwise comparisons of the form $\Omega\left(\hat{C}, \hat{C'}\right)$, such that $\|\phi - \hat{\phi}\|_{--} < \kappa$ for sufficiently small $\mathbb{R} \ni \kappa > 0$ and for any suitable norm $\|\cdot\|_{-}$.

Confusion Matrices

- Assume $g(t) = \mathbb{P}[\eta(X) \ge t]$ is continuous and strictly decreasing for $t \in [0, 1]$
- C is convex, closed, contained in the rectangle $[0, \zeta] \times [0, 1 \zeta]$ (bounded), and 180° rotationally symmetric around the center-point $\left(\frac{\zeta}{2}, \frac{1-\zeta}{2}\right)$. Under our assumption, $(0, 1 - \zeta)$ and $(\zeta, 0)$ are the only vertices of C; C is strictly convex. Thus, any supporting hyperplane of C is tangent at only one point.
- Unique Bayes CM on boundary ∂C , independent of bias term

Confusion Matrices

- Vary tradeoffs $\mathbf{m} = (m_{00}, m_{11})$ s.t. $||\mathbf{m}|| = 1$; $\varphi_{LPM} = \{\mathbf{m} = (\cos \theta, \sin \theta) : \theta \in [0, 2\pi]\}$
- Given *m*, can recover Bayes classifier/CM; unique (convexity of C).
- Also, supporting hyperplane

$$\bar{\ell}_{\mathsf{m}} := m_{11} \cdot tp + m_{00} \cdot tn = m_{11} \overline{TP}_{\mathsf{m}} + m_{00} \overline{TN}_{\mathsf{m}}$$

- Note: If m_{00} , m_{11} are of opposite signs, \bar{h}_m is the trivial classifier predicting all 1's or all 0's. (positive slope)
- Note: Can split ∂C into upper/lower boundary $(\partial C_+, \partial C_-)$

Main idea: For a metric ψ (quasiconvex and monotone increasing in TP/TN) or ϕ (quasiconcave and monotone increasing), and parametrization ρ^+/ρ^- of upper/lower boundary, composition $\psi \circ \rho^-$ is quasiconvex and unimodal on [0, 1], and $\phi \circ \rho^+$ is quasiconcave and unimodal on [0, 1], and.

• Therefore, binary-search type algorithm is possible for maximizer \overline{C} , minimizer \underline{C} & first-order approximation of ϕ at these points (supporting hyperplane)

Algorithm 1 Quasiconcave Metric Maximization

- 1: Input: $\epsilon > 0$ and oracle Ω .
- 2: Initialize: $\theta_a = 0, \ \theta_b = \frac{\pi}{2}$.
- 3: while $|\theta_b \theta_a| > \epsilon$ do
- 4: Set $\theta_c = \frac{3\theta_a + \theta_b}{4}$, $\theta_d = \frac{\theta_a + \theta_b}{2}$, and $\theta_e = \frac{\theta_a + 3\theta_b}{4}$. Set corresponding slopes (**m**'s) using (6).
- 5: Obtain h
 _{θa}, h
 _{ba}, h
 _{ba}
- 6: Query $\Omega(\overline{C}_{\theta_c}, \overline{C}_{\theta_a}), \Omega(\overline{C}_{\theta_d}, \overline{C}_{\theta_c}), \Omega(\overline{C}_{\theta_e}, \overline{C}_{\theta_d}),$ and $\Omega(\overline{C}_{\theta_b}, \overline{C}_{\theta_e}).$
- 7: If $\overline{C}_{\theta} \succ \overline{C}_{\theta'} \prec \overline{C}_{\theta''}$ for consecutive $\theta < \theta' < \theta''$, assume the default order $\overline{C}_{\theta} \prec \overline{C}_{\theta'} \prec \overline{C}_{\theta''}$.
- 8: **if** $(\overline{C}_{\theta_a} \succ \overline{C}_{\theta_c})$ Set $\theta_b = \theta_d$.
- 9: **elseif** $(\overline{C}_{\theta_a} \prec \overline{C}_{\theta_c} \succ \overline{C}_{\theta_d})$ Set $\theta_b = \theta_d$.
- 10: **elseif** $(\overline{C}_{\theta_c} \prec \overline{C}_{\theta_d} \succ \overline{C}_{\theta_e})$ Set $\theta_a = \theta_c, \theta_b = \theta_e$.
- 11: **elseif** $(\overline{C}_{\theta_d} \prec \overline{C}_{\theta_e} \succ \overline{C}_{\theta_b})$ Set $\theta_a = \theta_d$.
- 12: else Set $\theta_a = \theta_d$.
- 13: **Output:** $\overline{\mathbf{m}}, \overline{C}$, and $\overline{\ell}$, where $\overline{\mathbf{m}} = \mathbf{m}_d \ (\theta_d), \overline{C} = \overline{C}_{\theta_d}$, and $\overline{\ell} := \langle \overline{\mathbf{m}}, (tp, tn) \rangle = \langle \overline{\mathbf{m}}, \overline{C} \rangle$.

э

(日) (同) (三) (三)

Algorithm 1 Quasiconcave Metric Maximization

- 1: Input: $\epsilon > 0$ and oracle Ω .
- 2: Initialize: $\theta_a = 0, \ \theta_b = \frac{\pi}{2}$.
- 3: while $|\theta_b \theta_a| > \epsilon$ do
- 4: Set $\theta_c = \frac{3\dot{\theta}_a + \theta_b}{4}$, $\theta_d = \frac{\theta_a + \theta_b}{2}$, and $\theta_e = \frac{\theta_a + 3\theta_b}{4}$. Set corresponding slopes (**m**'s) using (6).
- Obtain h
 _{θa}, h
 _{ba}, h
 _{ba},
- 6: Query $\Omega(\overline{C}_{\theta_c}, \overline{C}_{\theta_a}), \Omega(\overline{C}_{\theta_d}, \overline{C}_{\theta_c}), \Omega(\overline{C}_{\theta_e}, \overline{C}_{\theta_d}),$ and $\Omega(\overline{C}_{\theta_b}, \overline{C}_{\theta_e}).$
- 7: If $\overline{C}_{\theta} \succ \overline{C}_{\theta'} \prec \overline{C}_{\theta''}$ for consecutive $\theta < \theta' < \theta''$, assume the default order $\overline{C}_{\theta} \prec \overline{C}_{\theta'} \prec \overline{C}_{\theta''}$.
- 8: **if** $(\overline{C}_{\theta_a} \succ \overline{C}_{\theta_c})$ Set $\theta_b = \theta_d$.
- 9: **elseif** $(\overline{C}_{\theta_a} \prec \overline{C}_{\theta_c} \succ \overline{C}_{\theta_d})$ Set $\theta_b = \theta_d$.
- 10: elseif $(\overline{\underline{C}}_{\theta_c} \prec \overline{\underline{C}}_{\theta_d} \succ \overline{\underline{C}}_{\theta_e})$ Set $\theta_a = \theta_c, \ \theta_b = \theta_e$.
- 11: **elseif** $(\overline{C}_{\theta_d} \prec \overline{C}_{\theta_e} \succ \overline{C}_{\theta_b})$ Set $\theta_a = \theta_d$.
- 12: else Set $\theta_a = \theta_d$.
- 13: **Output:** $\overline{\mathbf{m}}, \overline{C}$, and $\overline{\ell}$, where $\overline{\mathbf{m}} = \mathbf{m}_d \ (\theta_d), \overline{C} = \overline{C}_{\theta_d}$, and $\overline{\ell} := \langle \overline{\mathbf{m}}, (tp, tn) \rangle = \langle \overline{\mathbf{m}}, \overline{C} \rangle$.

• Quasiconvex: Start with $\theta \in [\pi, \frac{3}{2}\pi]$ and flip all \prec and \succ .

13/21

Algorithm 1 Quasiconcave Metric Maximization

- 1: Input: $\epsilon > 0$ and oracle Ω .
- 2: Initialize: $\theta_a = 0, \ \theta_b = \frac{\pi}{2}$.
- 3: while $|\theta_b \theta_a| > \epsilon$ do
- 4: Set $\theta_c = \frac{3\theta_a + \theta_b}{4}$, $\theta_d = \frac{\theta_a + \theta_b}{2}$, and $\theta_e = \frac{\theta_a + 3\theta_b}{4}$. Set corresponding slopes (**m**'s) using (6).
- Obtain h
 _{θa}, h
 _{ba}, h
 _{ba},
- 6: Query $\Omega(\overline{C}_{\theta_c}, \overline{C}_{\theta_a}), \Omega(\overline{C}_{\theta_d}, \overline{C}_{\theta_c}), \Omega(\overline{C}_{\theta_e}, \overline{C}_{\theta_d}),$ and $\Omega(\overline{C}_{\theta_b}, \overline{C}_{\theta_e}).$
- 7: If $\overline{C}_{\theta} \succ \overline{C}_{\theta'} \prec \overline{C}_{\theta''}$ for consecutive $\theta < \theta' < \theta''$, assume the default order $\overline{C}_{\theta} \prec \overline{C}_{\theta'} \prec \overline{C}_{\theta''}$.
- 8: **if** $(\overline{C}_{\theta_a} \succ \overline{C}_{\theta_c})$ Set $\theta_b = \theta_d$.
- 9: **elseif** $(\overline{\underline{C}}_{\theta_a} \prec \overline{\underline{C}}_{\theta_c} \succ \overline{\underline{C}}_{\theta_d})$ Set $\theta_b = \theta_d$.
- 10: **elseif** $(\overline{\underline{C}}_{\theta_c} \prec \overline{\underline{C}}_{\theta_d} \succ \overline{\underline{C}}_{\theta_e})$ Set $\theta_a = \theta_c, \ \theta_b = \theta_e$.
- 11: **elseif** $(\overline{C}_{\theta_d} \prec \overline{C}_{\theta_e} \succ \overline{C}_{\theta_b})$ Set $\theta_a = \theta_d$.
- 12: else Set $\theta_a = \theta_d$.
- 13: **Output:** $\overline{\mathbf{m}}, \overline{C}$, and $\overline{\ell}$, where $\overline{\mathbf{m}} = \mathbf{m}_d \ (\theta_d), \overline{C} = \overline{C}_{\theta_d}$, and $\overline{\ell} := \langle \overline{\mathbf{m}}, (tp, tn) \rangle = \langle \overline{\mathbf{m}}, \overline{C} \rangle$.
- Quasiconvex: Start with $\theta \in \left[\pi, \frac{3}{2}\pi\right]$ and flip all \prec and \succ .
- LPM elicitation: Run Algorithm 1, querying oracle, and take elicited metric \hat{m} (maximizer) to be the slope of the resulting hyperplane.

13/21

▲ 西部

Assumption

Let $\phi \in \varphi_{LFPM}$. We assume $p_{11}, p_{00} \ge 0, p_{11} \ge q_{11}, p_{00} \ge q_{00},$ $p_0 = 0, q_0 = (p_{11} - q_{11})\zeta + (p_{00} - q_{00})(1 - \zeta), \text{ and } p_{11} + p_{00} = 1.$

• With this assumption, ϕ is bounded in [0, 1] and monotonically increasing in TP and TN.

Assumption

Let $\phi \in \varphi_{LFPM}$. We assume $p_{11}, p_{00} \ge 0, p_{11} \ge q_{11}, p_{00} \ge q_{00},$ $p_0 = 0, q_0 = (p_{11} - q_{11})\zeta + (p_{00} - q_{00})(1 - \zeta), \text{ and } p_{11} + p_{00} = 1.$

• With this assumption, ϕ is bounded in [0, 1] and monotonically increasing in TP and TN.

Algorithm Overview

- Obtain maximizer and minimizer using Algorithm 1
- Results in two systems of equations w/ 1 degree of freedom
- The true metric is where solutions to the systems match pointwise on the CMs.

- Obtain maximizer and minimizer using Algorithm 1
 - Suppose the true metric is $\phi^*(C) = \frac{p_{11}^* TP + p_{00}^* TN}{q_{11}^* TP + q_{00}^* TN + q_0^*}$, and let $\overline{\tau}, \underline{\tau}$ be the maximizer/minimizer of ϕ over C.
 - There exists a hyperplane $\bar{\ell}_f^* := (p_{11}^* - \bar{\tau}^* q_{11}^*) tp + (p_{00}^* - \bar{\tau}^* q_{00}^*) tn = \bar{\tau}^* q_0^*$ which touches C at $(\overline{TP}^*, \overline{TN}^*)$ on ∂C_+ .
 - There also exists a hyperplane $\underline{\ell}_{f}^{*} := (p_{11}^{*} \underline{\tau}^{*}q_{11}^{*}) tp + (p_{00}^{*} \underline{\tau}^{*}q_{00}^{*}) tn = \underline{\tau}^{*}q_{0}^{*},$ which touches C at $(\underline{TP}^{*}, \underline{TN}^{*})$ on ∂C_{-} .

▲ 西部

 $\bullet\,$ Results in two systems of equations w/ 1 degree of freedom

• From Algorithm 1, we can get a hyperplane $\bar{\ell} := \bar{m}_{11}tp + \bar{m}_{00}tn = \bar{C}_0$,

• where
$$\bar{C}_0 = \bar{m}_{11} \overline{TP}^* + \bar{m}_{00} \overline{TN}$$

• equivalent to $\bar{\ell}_{\rm f}^*$ up to a constant multiple

• SoE:
$$p_{11}^* - \bar{\tau}^* q_{11}^* = \alpha \bar{m}_{11}, p_{00}^* - \bar{\tau}^* q_{00}^* = \alpha \bar{m}_{00}, \bar{\tau}^* q_0^* = \alpha \bar{C}_0$$

•
$$p'_{11} - \tau^* q'_{11} = m_{11}, p'_{00} - \tau^* q'_{00} = m_{00}, \tau^* q'_0 = C_0$$

• From Algorithm 1, we also get the hyperplane

$$\ell := m_{11} tp + m_{00} tn = C_0,$$

•
$$\underline{C}_0 = \underline{m}_{11} \underline{TP}^* + \underline{m}_{00} \underline{TN}^*.$$

• equivalent to $\underline{\ell}_f^*$ up to a constant multiple

• SoE:
$$p_{11}^* - \underline{\tau}^* q_{11}^* = \gamma \underline{m}_{11}, p_{00}^* - \underline{\tau}^* q_{00}^* = \gamma \underline{m}_{00}, \underline{\tau}^* q_0^* = \gamma \underline{C}_0$$

• $p_{11}'' - \underline{\tau}^* q_{11}'' = \underline{m}_{11}, p_{00}'' - \underline{\tau}^* q_{00}'' = \underline{m}_{00}, \underline{\tau}^* q_0'' = \underline{C}_0.$

 $\bullet\,$ Results in two systems of equations w/ 1 degree of freedom

• From Algorithm 1, we can get a hyperplane $\bar{\ell} := \bar{m}_{11}tp + \bar{m}_{00}tn = \bar{C}_0$,

• where
$$\bar{C}_0 = \bar{m}_{11} \overline{TP}^* + \bar{m}_{00} \overline{TN}$$

• equivalent to $\bar{\ell}_f^*$ up to a constant multiple

• SoE:
$$p_{11}^* - \bar{\tau}^* q_{11}^* = \alpha \bar{m}_{11}, p_{00}^* - \bar{\tau}^* q_{00}^* = \alpha \bar{m}_{00}, \bar{\tau}^* q_0^* = \alpha \bar{C}_0$$

•
$$p'_{11} - \bar{\tau}^* q'_{11} = \bar{m}_{11}, p'_{00} - \bar{\tau}^* q'_{00} = \bar{m}_{00}, \bar{\tau}^* q'_0 = C_0$$

• From Algorithm 1, we also get the hyperplane

• From Algorithm 1, we also get the hyperplar
$$\underline{\ell} := \underline{m}_{11} tp + \underline{m}_{00} tn = \underline{C}_0$$
,

$$= \underline{\underline{m}}_{11} t p + \underline{\underline{m}}_{00} t n = \underline{\underline{c}}_{0},$$

•
$$\underline{C}_0 = \underline{m}_{11} \underline{TP}^* + \underline{m}_{00} \underline{TN}^*.$$

• equivalent to $\underline{\ell}_{\mathrm{f}}^*$ up to a constant multiple

• SoE:
$$p_{11}^* - \underline{\tau}^* q_{11}^* = \gamma \underline{m}_{11}, p_{00}^* - \underline{\tau}^* q_{00}^* = \gamma \underline{m}_{00}, \underline{\tau}^* q_0^* = \gamma \underline{C}_0$$

• $p_{11}'' - \underline{\tau}^* q_{11}'' = \underline{m}_{11}, p_{00}'' - \underline{\tau}^* q_{00}'' = \underline{m}_{00}, \underline{\tau}^* q_0'' = \underline{C}_0.$

Both of these SoE's have only one degree of freedom; knowing p'₁₁ solves it as follows:

•
$$p'_{00} = 1 - p'_{11}, q'_0 = \bar{C}_0 \frac{P'}{Q'}$$

•
$$q_{11}' = (p_{11}' - \bar{m}_{11}) \, rac{P'}{Q'}, \, q_{00}' = (p_{00}' - \bar{m}_{00}) \, rac{P'}{Q'}$$

- where $P' = p'_{11}\zeta + p'_{00}(1-\zeta)$ and $Q' = P' + \bar{C}_0 \bar{m}_{11}\zeta \bar{m}_{00}(1-\zeta)$
- Say we know $p_{11}'.$ Then, we can solve the above SoE and obtain a metric $\phi'.$
- Similarly, if we know p_{11}'' , we can solve an analogous SoE and obtain a metric ϕ'' .

3

Both of these SoE's have only one degree of freedom; knowing p'₁₁ solves it as follows:

•
$$p'_{00} = 1 - p'_{11}, q'_0 = \bar{C}_0 \frac{P'}{Q'}$$

•
$$q_{11}' = (p_{11}' - \bar{m}_{11}) \, \frac{P'}{Q'}, \, q_{00}' = (p_{00}' - \bar{m}_{00}) \, \frac{P'}{Q'}$$

- where $P' = p'_{11}\zeta + p'_{00}(1-\zeta)$ and $Q' = P' + \bar{C}_0 \bar{m}_{11}\zeta \bar{m}_{00}(1-\zeta)$
- Say we know $p_{11}'.$ Then, we can solve the above SoE and obtain a metric $\phi'.$
- Similarly, if we know p_{11}'' , we can solve an analogous SoE and obtain a metric ϕ'' .

• When
$$p_{11}^*/p_{00}^* = p_{11}'/p_{00}' = p_{11}''/p_{00}''$$
, then $\phi^*(C) = \phi'(C)/\alpha = -\phi''(C)/\gamma$.

3

17/21

Both of these SoE's have only one degree of freedom; knowing p'₁₁ solves it as follows:

•
$$p'_{00} = 1 - p'_{11}, q'_0 = \bar{C}_0 \frac{P'}{Q'}$$

•
$$q'_{11} = (p'_{11} - \bar{m}_{11}) \, \frac{P'}{Q'}, \, q'_{00} = (p'_{00} - \bar{m}_{00}) \, \frac{P'}{Q'}$$

- where $P' = p'_{11}\zeta + p'_{00}(1-\zeta)$ and $Q' = P' + \bar{C}_0 \bar{m}_{11}\zeta \bar{m}_{00}(1-\zeta)$
- Say we know $p_{11}'.$ Then, we can solve the above SoE and obtain a metric $\phi'.$
- Similarly, if we know p_{11}'' , we can solve an analogous SoE and obtain a metric ϕ'' .
- When $p_{11}^*/p_{00}^* = p_{11}'/p_{00}' = p_{11}''/p_{00}''$, then $\phi^*(C) = \phi'(C)/\alpha = -\phi''(C)/\gamma$.
- We will grid search for p'_{11} on [0, 1], and compute ϕ', ϕ'' . We will check a number of confusion matrices on the boundaries and select the value of p'_{11} for which the ratio ϕ''/ϕ' is the closest to constant

(a)

3

LFPM Elicitation (True metric ϕ^*)

- 1. Run Algorithm 1 to get \overline{C}^* , a hyperplane $\overline{\ell}$, and SoE (9).
- 2. Run Algorithm 2 to get \underline{C}^* , a hyperplane $\underline{\ell}$, and SoE (10).
- 3. Run the oracle-query independent Algorithm 3 to get the elicited metric, which satisfies both the SoEs.

Algorithm 3 Grid Search for Best Ratio

1: Input: k, Δ .

2: Initialize:
$$\sigma_{opt} = \infty, p'_{11,opt} = 0.$$

3: Generate $C_1, ..., C_k$ on ∂C_+ and ∂C_- (Section 3).

4: for
$$(p'_{11} = 0; p'_{11} \le 1; p'_{11} = p'_{11} + \Delta)$$
 do

5: Compute ϕ' , ϕ'' using Proposition 4. Compute array $r = \left[\frac{\phi'(C_1)}{\phi''(C_1)}, ..., \frac{\phi'(C_k)}{\phi''(C_k)}\right]$. Set $\sigma = \operatorname{std}(r)$.

6: **if** $(\sigma < \sigma_{opt})$ Set $\sigma_{opt} = \sigma$ and $p'_{11,opt} = p'_{11}$.

7: **Output:**
$$p'_{11,opt}$$
.

Theorem 1

Given $\epsilon, \epsilon_{\Omega} \ge 0$ and a metric ϕ satisfying our assumptions. Algorithm 1/2 finds an approximate maximizer/minimizer and supporting hyperplane. Also, the value of ϕ at that point is within $O\left(\sqrt{\epsilon_{\Omega}} + \epsilon\right)$ of the optimum, and the number of queries is $O\left(\log \frac{1}{\epsilon}\right)$.

Theorem 1

Given $\epsilon, \epsilon_{\Omega} \ge 0$ and a metric ϕ satisfying our assumptions. Algorithm 1/2 finds an approximate maximizer/minimizer and supporting hyperplane. Also, the value of ϕ at that point is within $O\left(\sqrt{\epsilon_{\Omega}} + \epsilon\right)$ of the optimum, and the number of queries is $O\left(\log \frac{1}{\epsilon}\right)$.

Theorem 2

Let m^{*} be the true performance metric. Given $\epsilon > 0$, *LPM* elicitation outputs a performance metric \hat{m} , s.t. $\|m^* - \hat{m}\|_{\infty} \le \sqrt{2}\epsilon + \frac{2}{k_0}\sqrt{2k_1\epsilon_{\Omega}}$.

Theorem 1

Given $\epsilon, \epsilon_{\Omega} \geq 0$ and a metric ϕ satisfying our assumptions. Algorithm 1/2 finds an approximate maximizer/minimizer and supporting hyperplane. Also, the value of ϕ at that point is within $O\left(\sqrt{\epsilon_{\Omega}} + \epsilon\right)$ of the optimum, and the number of queries is $O\left(\log \frac{1}{\epsilon}\right)$.

Theorem 2

Let m^{*} be the true performance metric. Given $\epsilon > 0$, *LPM* elicitation outputs a performance metric \hat{m} , s.t. $\|m^* - \hat{m}\|_{\infty} \le \sqrt{2}\epsilon + \frac{2}{k_0}\sqrt{2k_1\epsilon_{\Omega}}$.

Lemma 3

Let h_{θ} and \hat{h}_{θ} be two classifiers estimated using η and $\hat{\eta}$, respectively. Further, let $\bar{\theta}$ be such that $h_{\bar{\theta}} = \arg \max_{\theta} \phi(h_{\theta})$. Then $\|C(\hat{h}_{\bar{\theta}}) - C(h_{\bar{\theta}})\|_{\infty} = O(\|\hat{\eta}_n - \eta\|_{\infty}).$

Real-World Experiments

- Used Breast Cancer Diagnostic dataset (569 samples) and Magic (M) dataset (19020 samples)
- Both LPM/LFPM: Improved elicitation for dataset *M*: ME improves with larger datasets
- LPM: Recover all 28 for $\epsilon = 0.11$, $\epsilon = 0.02$ is too tight; algorithm is stuck at the closest achievable confusion matrix from finite samples, need not be optimal overall
- LFPM: Results for dataset M; elicited metrics equivalent to true metrics up to a constant

• Select tradeoff between overall performance and discrepancy between performance on certain protected groups

Definition 1. Fair Performance Metric: Let ϕ and φ be monotonically increasing linear functions of overall rates and group discrepancies, respectively. The fair metric Ψ is a trade-off between ϕ and φ . In particular, given $\mathbf{a} \in \mathbb{R}^q$, $\mathbf{a} \ge 0$ (misclassification weights), a set of vectors $\mathbf{B} := {\mathbf{b}^{uv} \in \mathbb{R}^q, \mathbf{b}^{uv} \ge 0}_{u,v=1,v>u}^m$ (fairness violation weights), and a scalar λ (trade-off) with

$$\|\mathbf{a}\|_{2} = 1, \qquad \sum_{u,v=1,v>u}^{m} \|\mathbf{b}^{uv}\|_{2} = 1, \qquad 0 \le \lambda \le 1,$$
 (5)

(wlog., due to scale invariance), we define the metric Ψ as:

$$\Psi(\mathbf{r}^{1:m}; \mathbf{a}, \mathbf{B}, \lambda) \coloneqq \underbrace{(1-\lambda)}_{nade-off} \underbrace{\langle \mathbf{a}, \mathbf{r} \rangle}_{\phi(\mathbf{r})} + \lambda \underbrace{\left(\sum_{u,v=1,v>u}^{m} \langle \mathbf{b}^{uv}, \mathbf{d}^{uv} \rangle \right)}_{\varphi(\mathbf{r}^{1:m})}.$$
(6)

²Gaurush Hiranandani, Harikrishna Narasimhan, and Oluwasanmi Koyejo. Fair Performance Metric Elicitation. In NeurIPS, 2020.

Bidipta Sarkar, Tanvi Deshpande

Metric Elicitation

Multiclass Performance Metric Elicitation

Bidipta Sarkar, Tanvi Deshpande

October 16, 2023

Bidipta Sarkar, Tanvi Deshpande Multiclass Performance Metric Elicitation October 16, 2023

Introduction

- 2 Metric Elicitation
- Oiagonal Confusions
- Off-Diagonal Confusions

Introduction

- 2 Metric Elicitation
- 3 Diagonal Confusions
- 4 Off-Diagonal Confusions

э.

э

Similar motivation to binary classification performance metrics, but extended to multiclass classification.

Similar motivation to binary classification performance metrics, but extended to multiclass classification.

Example

Test to determine which subtype of leukemia is present in a patient

¹Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, and Oluwasanmi O Koyejo. Multiclass performance metric elicitation. In NeurIPS, 2019□ → (♂→ (≧→ (≧→ (≧→))) Similar motivation to binary classification performance metrics, but extended to multiclass classification.

Example

Test to determine which subtype of leukemia is present in a patient

• It may be possible that some treatment options are worse than others during misclassification

- $X \in \mathcal{X}$ is input RV
- $Y \in [k]$ is output RV
 - [k] is the index set $\{1, 2, \ldots, k\}$
- Dataset of size *n* denoted by $\{(\vec{x}, y)_i\}_{i=1}^n$ generated iid from $\mathbb{P}(X, Y)$

•
$$\eta_i(\vec{x}) = \mathbb{P}(Y = i | X = \vec{x})$$

- $\xi_i = \mathbb{P}(Y = i)$
- Set of all classifiers: $\mathcal{H} = \{h : \mathcal{X} \to \Delta_k\}$
 - $(\Delta_k \text{ is } (k-1) \text{ dimensional simplex})$
- Confusion matrix for h is $\mathsf{C}(h,\mathbb{P})\in\mathbb{R}^{k imes k}$
 - $C_{ij}(h,\mathbb{P}) = \mathbb{P}(Y = i, h = j)$ for $i, j \in [k]$

- $X \in \mathcal{X}$ is input RV
- $Y \in [k]$ is output RV
 - [k] is the index set $\{1, 2, \ldots, k\}$
- Dataset of size *n* denoted by $\{(\vec{x}, y)_i\}_{i=1}^n$ generated iid from $\mathbb{P}(X, Y)$

•
$$\eta_i(\vec{x}) = \mathbb{P}(Y = i | X = \vec{x})$$

- $\xi_i = \mathbb{P}(Y = i)$
- Set of all classifiers: $\mathcal{H} = \{h : \mathcal{X} \to \Delta_k\}$
 - $(\Delta_k \text{ is } (k-1) \text{ dimensional simplex})$
- Confusion matrix for h is $C(h, \mathbb{P}) \in \mathbb{R}^{k \times k}$
 - $C_{ij}(h,\mathbb{P}) = \mathbb{P}(Y = i, h = j)$ for $i, j \in [k]$

Off-Diagonal Confusions

 $C(h, \mathbb{P})$ is uniquely determined by off-diagonal elements

- Number of off-diagonal elements is $q := k^2 k$
- $\vec{c}(h, \mathbb{P}) = off-diag(C(h, \mathbb{P}))$
- Space of off-diagonal confusions is $\mathcal{C} = \{ \vec{c}(h, \mathbb{P}) : h \in \mathcal{H} \}$

Diagonal Confusions

Some metrics only care about misclassification, not its type

•
$$\vec{d}(h,\mathbb{P}) = diag(C(h,\mathbb{P}))$$

• Space of diagonal confusions is $\mathcal{D} = \{ \vec{d}(h, \mathbb{P}) : h \in \mathcal{H} \}$

A (10) A (10)

Introduction

2 Metric Elicitation

3 Diagonal Confusions

4 Off-Diagonal Confusions

5 Analysis

Identical to binary classification, just using the new multiclass notation

Oracle Query

Given two classifiers h, h', a query to the oracle with metric ϕ is represented by:

$$\Gamma(h, h') = \Omega(\vec{c}, \vec{c}') = \mathbb{1}[\phi(\vec{c}) > \phi(\vec{c'})] =: \mathbb{1}[\vec{c} \succ \vec{c'}]$$
(1)

8 / 24

Metric Elicitation with Pairwise Queries

Let the oracle's performance metric be ϕ . Using oracle queries of the form $\Omega(\hat{c}, \hat{c}')$ (estimated confusions from samples), we want to recover metric $\hat{\phi}$ such that $||\phi - \hat{\phi}|| < \kappa$ under suitable norm for sufficiently small error tolerance.

Diagonal Linear Performance Metric (DLPM)

Family denoted by φ_{DLPM} . Given $\vec{a} \in \mathbb{R}^k$ such that $||\vec{a}||_1 = 1$, metric is $\psi(\vec{d}) := \langle \vec{a}, \vec{d} \rangle$

• Also known as weighted accuracy

Linear Performance Metric (LPM)

Family denoted by φ_{LPM} . Given $\vec{a} \in \mathbb{R}^q$ such that $||\vec{a}||_2 = 1$, metric is $\phi(\vec{c}) := <\vec{a}, \vec{c} >$

Bidipta Sarkar, Tanvi Deshpande Multiclass Performance Metric Elicitation October 16, 2023

Diagonal Linear Performance Metric (DLPM)

Family denoted by φ_{DLPM} . Given $\vec{a} \in \mathbb{R}^k$ such that $||\vec{a}||_1 = 1$, metric is $\psi(\vec{d}) := \langle \vec{a}, \vec{d} \rangle$

- Also known as weighted accuracy
- Focus on eliciting monotonically increasing DLPMs

Linear Performance Metric (LPM)

Family denoted by φ_{LPM} . Given $\vec{a} \in \mathbb{R}^q$ such that $||\vec{a}||_2 = 1$, metric is $\phi(\vec{c}) := \langle \vec{a}, \vec{c} \rangle$

Focus on eliciting monotonically decreasing LPMs

BO Confusion \overline{c} over subset $S \subseteq C$

 $ar{c} := \operatorname{argmax}_{ec{c} \in \mathcal{S}} \phi(ec{c})$

analogous definition for diagonal confusions

Restricted Bayes Optimal (RBO) diagonal Confusion \bar{d}_{k_1,k_2}

$$ar{d}_{k_1,k_2} := \operatorname{argmax}_{ec{d} \in \mathcal{D}_{k_1,k_2}} \psi(ec{d})$$

ullet Setting where classifiers are restricted to only predict classes k_1 and k_2

Introduction

- 2 Metric Elicitation
- Oiagonal Confusions
- ④ Off-Diagonal Confusions

5 Analysis

Vectors of trivial classifiers

 $ec{v}_i \in \mathbb{R}^k$ for $i \in [k]$ are vectors with ξ_i at the i-th index and zero elsewhere

Vectors of trivial classifiers

 $ec{v}_i \in \mathbb{R}^k$ for $i \in [k]$ are vectors with ξ_i at the i-th index and zero elsewhere

• Represent diagonal confusions when only predicting class *i*

Vectors of trivial classifiers

 $ec{v}_i \in \mathbb{R}^k$ for $i \in [k]$ are vectors with ξ_i at the i-th index and zero elsewhere

Represent diagonal confusions when only predicting class i

Geometry of \mathcal{D}

Strictly convex, closed, and contained in the box $[0, \xi_1] \times \cdots \times [0, \xi_k]$

- \vec{v}_i are the only vertices
- For any $k_1, k_2 \in [k]$, the 2D axis-aligned face of \mathcal{D} is \mathcal{D}_{k_1,k_2} , equivalent to binary classification confusion matrices

RBO classifier

Let $\psi \in \varphi_{\textit{DLPM}}$ be parameterized by \vec{a} , then

$$\bar{h}_{k_1,k_2}(\vec{x}) = \begin{cases} k_1, \text{ if } a_{k_1}\eta_{k_1}(\vec{x}) \ge a_{k_2}\eta_{k_2}(\vec{x}) \\ k_2, \text{ o.w.} \end{cases}$$

is the RBO classifier with respect to ψ .

Upper boundary of \mathcal{D}_{k_1,k_2} , $\partial \mathcal{D}^+_{k_1,k_2}$

The RBO diagonal confusions confined to classes k_1 and k_2 for monotonically increasing DLPMs, such that $a_{k_1} + a_{k_2} > 0$.

• Parameterize by choosing $m \in [0, 1]$ and constructing DLPM as $a_{k_1} = m, a_{k_2} = 1 - m$

• Parameterization denoted as
$$\nu(m; k_1, k_2)$$

(2)

Main idea: For a metric ψ (quasiconcave and monotone increasing), and parameterization ρ^+ of upper boundary, composition $\psi \circ \rho^+$ is concave and unimodal on [0, 1].

- Therefore, binary-search type algorithm is possible!
 - Can estimate a_i^*/a_1^* for each *i* independently using binary search.

Algorithm 1: DLPM Elicitation **Input:** $\epsilon > 0$, oracle Ω , $\hat{a}_1 = 1$ For $i = 2, \cdots, k$ do **Initialize:** $m^a = 0, m^b = 1.$ While $\left|m^{b}-m^{a}\right| > \epsilon$ do • Set $m^{c} = \frac{3m^{a} + m^{b}}{4}$, $m^{d} = \frac{m^{a} + m^{b}}{2}$, and $m^e = \frac{m^a + 3m^b}{4}$ • Set $\overline{\mathbf{d}}_{1,i}^a = \nu(m^a; 1, i)$ (i.e. parametrization of $\partial \mathcal{D}_{1,i}^+$ in Section 3.1). Similarly, set $\overline{\mathbf{d}}_{1\,i}^{c}, \overline{\mathbf{d}}_{1\,i}^{d}, \overline{\mathbf{d}}_{1\,i}^{e}, \overline{\mathbf{d}}_{1\,i}^{b}, \overline{\mathbf{d}}_{1\,i}^{b}$ • Query $\Omega(\overline{\mathbf{d}}_{1,i}^c, \overline{\mathbf{d}}_{1,i}^a), \Omega(\overline{\mathbf{d}}_{1,i}^d, \overline{\mathbf{d}}_{1,i}^c),$ $\Omega(\overline{\mathbf{d}}_{1}^{e}, \overline{\mathbf{d}}_{1}^{d})$, and $\Omega(\overline{\mathbf{d}}_{1}^{b}, \overline{\mathbf{d}}_{1}^{e})$. • $[m^a, m^b] \leftarrow ShrinkInterval-1$ (responses). Set $m^d = \frac{m^a + m^b}{2}$. Then set $\hat{a}_i = \frac{1 - m^d}{d} \hat{a}_1$. **Output:** $\hat{\mathbf{a}} = \left(\frac{\hat{a}_1}{\|\hat{\mathbf{a}}\|_1}, \cdots, \frac{\hat{a}_k}{\|\hat{\mathbf{a}}\|_1}\right).$

October 16, 2023

1 Introduction

- 2 Metric Elicitation
- 3 Diagonal Confusions
- Off-Diagonal Confusions

5 Analysis

Geometry of Off-Diagonal Confusions

Vectors of trivial classifiers

 $ec{u}_i \in \mathcal{C}$ for $i \in [k]$ represent diagonal confusions when only predicting class i

Geometry of $\ensuremath{\mathcal{C}}$

Convex (not strictly!), and contained in box $[0,\xi_1]^{(k-1)} \times \cdots \times [0,\xi_k]^{(k-1)}$

- $\{\vec{u}_i\}_{i=1}^k$ belongs to the set of vertices of C.
- C always contains $\vec{o} = \frac{1}{k} \sum_{i=1}^{k} \vec{u}_i$: off-diagonal confusions for trivial classifier that randomly predicts each class with equal probability on the entire space \mathcal{X} .

Assumption: existence of sphere $S_{\lambda} \subset C$ centered at \vec{o}

Essentially assumes that there is some signal for non-trivial classification

• Ensures that unique optimal off-diagonal confusion \bar{c} over sphere S_{λ} is point on boundary of S_{λ} given by $\bar{c} = \lambda \vec{a} + \vec{o}$.

Lower boundary of S_{λ} , ∂S_{λ}^{-}

Set of optimal off-diagonal confusions over sphere S_{λ} for LPMs with $a_i \leq 0$ (monotonically decreasing condition)

Parameterizing ∂S_{λ}^{-}

Standard method of sphere parameterization by angles.

- $\vec{\theta}$ is (q-1) dimensional vector where primary angle is in the third quadrant and all others are in the second quadrant
 - Choice of quadrant ensures monotonically decreasing condition
- LMP construction:

• for
$$i \in [q-1]$$
 set $a_i = \prod_{i=1}^{i-1} \sin(\theta_i) \cos(\theta_i)$

• $a_q = \prod_{j=1}^{q-1} \sin(\theta_j)$

Main idea: ∂C may have flat regions (not strictly convex), but we can instead use query space from sphere $S_{\lambda} \subset C$

- Can do coordinate-wise binary-search
 - Update single angle, keeping all others fixed using binary search
 - Convergence is assured via a dual interpretation: minimizing smooth, strongly convex function

Algorithm 2: LPM Elicitation **Input:** $\epsilon > 0$, oracle Ω , λ . and $\theta = \theta^{(1)}$ For $t = 1, 2, \cdots, T$ do Set $\theta^a = \theta^c = \theta^d = \theta^e = \theta^b = \theta^{(t)}$ if (t%(q-1)) Set j = t%(q-1); else j = q-1. if (j = q - 1) Initialize: $\theta_i^a = \pi, \theta_i^b = 3\pi/2.$ else Initialize: $\theta_i^a = \pi/2, \theta_i^b = \pi$. While $\left|\theta_{j}^{b}-\theta_{j}^{a}\right| > \epsilon$ do • Set $\theta_j^c = \frac{3\theta_j^a + \theta_j^b}{4}, \theta_j^d = \frac{\theta_j^a + \theta_j^b}{2}$ and $\theta_j^e = \frac{\theta_j^a + 3\theta_j^b}{4}$ • Set $\bar{\mathbf{c}}^a = \mu(\hat{\boldsymbol{\theta}}^a)$ (i.e. parametrization of ∂S_{λ}^- in Section 3.2). Similarly, set $\bar{\mathbf{c}}^c$, $\bar{\mathbf{c}}^d$, $\bar{\mathbf{c}}^e$, $\bar{\mathbf{c}}^b$. • Query $\overline{\Omega(\bar{\mathbf{c}}^c, \bar{\mathbf{c}}^a)}, \Omega(\bar{\mathbf{c}}^d, \bar{\mathbf{c}}^c), \Omega(\bar{\mathbf{c}}^e, \bar{\mathbf{c}}^d), \Omega(\bar{\mathbf{c}}^b, \bar{\mathbf{c}}^e)$ • $[\theta_i^a, \theta_i^b] \leftarrow ShrinkInterval-2$ (responses). Set $\theta_i^d = \frac{1}{2}(\theta_i^a + \theta_i^b)$ and then set $\theta^{(t)} = \theta^d$. **Output:** $\hat{a}_i = \prod_{i=1}^{i-1} \sin \theta_i^{(T)} \cos \theta_i^{(T)} \quad \forall i \in [q-1],$ $\hat{a}_q = \prod_{i=1}^{q-1} \sin \theta_i^{(T)}.$

Introduction

- 2 Metric Elicitation
- 3 Diagonal Confusions
- 4 Off-Diagonal Confusions

э

Robust under Oracle Feedback Noise ($\epsilon_{\Omega} \ge 0$): Oracle responds correctly as long as $|\phi(\vec{c}) - \phi(\vec{c'})| > \epsilon_{\Omega}$

DLPM

After $O((k-1)\log(\frac{1}{\epsilon}))$ queries to oracle, $||a^* - \hat{a}||_{\infty} \le O(\epsilon + \sqrt{\epsilon_{\Omega}})$ • Equivalent to $||a^* - \hat{a}||_2 \le O(\sqrt{k}(\epsilon + \sqrt{\epsilon_{\Omega}}))$

LPM

Assuming $\lambda >> \epsilon_{\Omega}$, after $O(z_1 \log(z_2/(q\epsilon^2))(q-1)\log(\frac{\pi}{2\epsilon}))$ queries to the oracle, $||a^* - \hat{a}||_2 \leq O(\sqrt{q}(\epsilon + \sqrt{\epsilon_{\Omega}/\lambda}))$, where z_1 and z_2 are constants independent of ϵ and q

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Real World data from SensIT dataset (78823 instances, 3 classes) and Vehicle dataset (846 instances, 4 classes), and tested on datasets with 50% and 75% of datapoints

- Standardize features and split each dataset into 2 parts: S_1 , S_2
 - S_1 used to learn $\{\hat{\eta}_i(x)\}_{i=1}^k$ using regularized softmax regression model
 - \bullet S_2 used for making prediction and computing sample confusion

Randomly select 100 DLPMs, and use $\epsilon = 0.01$ to recover estimates.

• Check proportion of times $||a^* - \hat{a}||_\infty \leq \omega$ for different values of ω

Figure 3: DLPM elicitation on real data for $\epsilon = 0.01$. For randomly chosen hundred \mathbf{a}^* , we show the proportion of times our estimates $\hat{\mathbf{a}}$ obtained with $4(k-1)\lceil \log(1/\epsilon) \rceil$ queries satisfy $\|\mathbf{a}^* - \hat{\mathbf{a}}\|_{\infty} \leq \omega$.

▲ 西部