
Active Learning
CS329H: Machine Learning from Human Preferences

Stephan Sharkov, Rehaan Ahmad, Adarsh Jeewajee

Plan

1. Active Learning Introduction
2. Active Learning and Pairwise Comparison

a. Active Comparison-Based Learning in Ranking
b. Active Learning Incorporating the User

3. Active Learning for Reward Functions
a. Non-Batch methods
b. Batch method

Plan

1. Active Learning Introduction
2. Active Learning and Pairwise Comparison

a. Active Comparison-Based Learning in Ranking
b. Active Learning Incorporating the User

3. Active Learning for Reward Functions
a. Non-Batch methods
b. Batch method

Using:
- the current model
- unlabelled input distr P(x)

Determine which new point, if:
- labeled for a cost
- trained on

would maximize some model performance
metric.

Active learning

Useful if data collection difficult / costly.
Lower data requirements if queries chosen well.

Real-world scenarios

Demo

How do I do x?

I learned x!

Learning unknown robot skills Sensor placement for
enhanced predictions

LLM knowledge acquisition

Paper: Active Learning with Statistical Models [Cohn 96]

Expected model change
Expected error reduction
Variance reduction
Uncertainty reduction
Ensemble disagreement reduction
Diversity increase
Conformal prediction

(Task: regression)

https://en.wikipedia.org/wiki/Conformal_prediction

Which new point ,
for which the model currently believes ,
if annotated as and added to the training data ,
would potentially lower the expected variance of the learner
across ?

Without the true label and without re-training,
we visualize a hypothetical future where the model
is actually trained on ,
using as a proxy for .

Paper: Active Learning with Statistical Models [Cohn 96]

Which new point ,
for which the model currently believes ,
if annotated as and added to the training data ,
would potentially lower the expected variance of the learner
across ?

Without the true label and without re-training,
we visualize a hypothetical future where the model
is actually trained on ,
using as a proxy for .

Paper: Active Learning with Statistical Models [Cohn 96]

train

probe

Model

…choose

Paper: Active Learning with Statistical Models [Cohn 96]

Next:

1. Mathematical description of expected learner variance (ELV)

2. Active learning algorithm to minimize ELV (for any model)

3. Closed-form ELV for 2 specific models
(Gaussian mixture, locally-weighted regression)

Expected error at x (across choosable datasets and annotations)

D being picked, P(D) may be very different from P(x,y)

Stochasticity in annotations

Noise in annotation of x
(independent of learner)

Learner squared bias at x

Learner variance at x

Learner variance at x

Expected learner variance at x
across estimated label belief

Learner variance at x

Learner variance at x, if add to training set

Expected learner variance across input distr

Expected learner variance

ALgorithm to minimize ELV

 = {} or init randomly

Each iter:

Sample candidate points from

Compute current belief for each point.

Calculate on each point using belief

Calculate ELV integral via Monte Carlo sampling from

Label point with lowest ELV:

Retrain on

Models with closed form expected learner variance

Mixture of gaussians Locally-weighted regression

Models with closed form expected learner variance

Experiment contrasting both models / algorithms

Plan

1. Active Learning Introduction
2. Active Learning and Pairwise Comparison

a. Active Comparison-Based Learning in Ranking
b. Active Learning Incorporating the User

3. Active Learning for Reward Functions
a. Non-Batch methods
b. Batch method

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Problem Definition

A ranking over a set of n objects Θ = (θ1,θ2,...,θn) is a mapping σ : {1,...,n} → {1,...,n} that
prescribes an order

σ(Θ) := θσ(1) ≺ θσ(2) ≺ ··· ≺ θσ(n−1) ≺ θσ(n) where θi ≺ θj means θi precedes θj in the ranking.

● Total possible number of rankings is n!
● Ranking of n objects can be done with standard sorting methods using nlogn

pairwise comparisons, if the comparisons are picked at random for every
query qi,j := {θi ≺ θj }

● Find a way to decrease the nlogn, this specific case dlogn

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Reasoning and Motivation

● Most work in ranking assumes a passive approach of doing all the rankings
● This might be inefficient since some comparisons don’t give that much value,

and humans can be costly
● Applications of this are quite popular and common
● What if we take the idea of human knowledge and transfer it to machine
● Specifically consider the geometric approach of using the embedding space

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Notations and assumptions

● Objects can be embedded in Rd
● θ1 , . . . , θn their locations in Rd
● Every ranking σ can be specified by a reference point rσ ∈ Rd, if the σ ranks

θi ≺ θj, then ||θi − rσ|| < ||θj − rσ||
● Σn,d - set of all possible rankings of the n objects that satisfy this embedding

condition
● Mn(σ) - the number of pairwise comparisons to identify the ranking σ. We will

reason about E[Mn]
● qi,j - the query of comparison between objects i and j

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Embedding Space

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

● label of qi,j is binary and denoted as yi,j := 1{qi,j}
(e.g. y1,2=0, y3,2=1)

Embedding Space

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

● label of qi,j is binary and denoted as yi,j := 1{qi,j}
(e.g. y1,2=0, y3,2=1)

● The dotted/dashed lines represents potential
queries of one of the three elements with a new
element

Embedding Space

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

● label of qi,j is binary and denoted as yi,j := 1{qi,j}
(e.g. y1,2=0, y3,2=1)

● The dotted/dashed lines represents potential
queries of one of the three elements with a new
element

● With the dotted line label of the query might be
different depending on whether we are
comparing with 2 (label 0) or 1 and 3 (label 1).
Thus, we need an actual comparison to know for
sure where that element stands in the ranking.

● With the dashed line label of the query is
always 1 and it can be inferred using the labels of
other queries

Embedding Space

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

● label of qi,j is binary and denoted as yi,j := 1{qi,j}
(e.g. q1,2=0, q2,3=1)

● The dotted/dashed lines represents potential
queries of one of the three elements with a new
element

● With the dotted line label of the query might be
different depending on whether we are
comparing with 2 (label 0) or 1 and 3 (label 1).
Thus, we need an actual comparison to know for
sure where that element stands in the ranking.

● With the dashed line label of the query is
always 1 and it can be inferred using the labels of
other queries

● Dotted lines is the queries for which we
actually want to use the human

Sequential Algorithm

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Sequential Algorithm

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Sequential Algorithm

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Σn,d - set of all possible rankings that satisfy the
embedding conditions

Q(i,j) - number of rankings that exist for i
elements in j-dimensional space (e.g. Q(1,d) = 1
and Q(n, 0) = 1)

|Σn,d| = Q(n,d) = Q(n−1,d) + (n−1) * Q(n−1,d−1)
- follows a 1D idea of inserting a new element into
a list of elements

|Σn,d| = Q(n,d) = Θ(n2d)

Sequential Algorithm

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

|Σn,d| - set of all possible rankings that satisfy the
embedding conditions

Q(i,j) - number of rankings that exist for i
elements in j-dimensional space (e.g. Q(1,d) = 1
and Q(n, 0) = 1)

|Σn,d| = Q(n,d) = Q(n−1,d) + (n−1) * Q(n−1,d−1)
- follows a 1D idea of inserting a new element into
a list of elements

|Σn,d| = Q(n,d) = Θ(n2d)

P(k,d) - number of rankings
that are possible to be true for
query with a new element k+1

Requestqi, k+1 = P(k,d)/Q(k,d)

Sequential Algorithm

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

|Σn,d| - set of all possible rankings that satisfy the
embedding conditions

Q(i,j) - number of rankings that exist for i
elements in j-dimensional space (e.g. Q(1,d) = 1
and Q(n, 0) = 1)

|Σn,d| = Q(n,d) = Q(n−1,d) + (n−1) * Q(n−1,d−1)
- follows a 1D idea of inserting a new element into
a list of elements

|Σn,d| = Q(n,d) = Θ(n2d)

P(k,d) - number of rankings
that are possible to be true for
query with a new element k+1

Requestqi, k+1 = P(k,d)/Q(k,d)

High value means the
probability of this request being
ambiguous is high, so higher
probability of it getting picked

E[Mn] = O(2dlogn)

Sequential Algorithm

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

|Σn,d| - set of all possible rankings that satisfy the
embedding conditions

Q(i,j) - number of rankings that exist for i
elements in j-dimensional space (e.g. Q(1,d) = 1
and Q(n, 0) = 1)

|Σn,d| = Q(n,d) = Q(n−1,d) + (n−1) * Q(n−1,d−1)
- follows a 1D idea of inserting a new element into
a list of elements

|Σn,d| = Q(n,d) = Θ(n2d)

P(k,d) - number of rankings
that are possible to be true for
query with a new element k+1

Requestqi, k+1 = P(k,d)/Q(k,d)

High value means the
probability of this request being
ambiguous is high, so higher
probability of it getting picked

E[Mn] = O(2dlogn)

But what if that one human
is not good?

Robust Sequential Algorithm

● Same idea but uses majority voting
● However, a group of people can still consistently give incorrect response
● Thus, the authors are hoping that majority voting can get at least a partial

ranking of the objects

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

Results

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

*|Σn,d| = nd

Plan

1. Active Learning Introduction
2. Active Learning and Pairwise Comparison

a. Active Comparison-Based Learning in Ranking
b. Active Learning Incorporating the User

3. Active Learning for Reward Functions
a. Non-Batch methods
b. Batch method

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

What if Active Learning knowledge did not come from data or embeddings but
directly from the user?

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

Problem Formulation

c - cost function to be determined with fewest possible
questions

H - given discrete set of hypothesis

Ch - cost function associated with hypothesis h

h* - true hypothesis

t(x,y) - performed test on comparing x and y

O = x > y or x < y - observation from t(x,y)

S = {(t1, o1), … (tm, om)} - sequence of m tests and
observations

w(H | S) - probability mass of all hypothesis that are still
consistent

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

Problem Formulation

c - cost function to be determined with fewest possible
questions

H - given discrete set of hypothesis

Ch - cost function associated with hypothesis h

h* - true hypothesis

t(x,y) - performed test on comparing x and y

O = x > y or x < y - observation from t(x,y)

S = {(t1, o1), … (tm, om)} - sequence of m tests and
observations

w(H, S) - probability mass of all hypothesis that are still
consistent

Noiseless setting:

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

User Noise Modeling

● Users are not perfect, which may result in poor performance
● Majority of prior research applied noise to all queries to account for user
● This is not an accurate representation of real-world behaviour, noise should

be “query-dependent” - supported in psychology literature
● Prior literature derived logistic model based on Luce-Sheppard’s rule to

account for the noise
● p((t, o = x) | h) ∝ exp (−γ*ch(x))

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

CLAUS

● Allowing users to express uncertainty will
increase satisfaction and algorithm
efficiency

● Using cost function c, uncertainty is ε
where if |c(x) − c(y)| < ε the user is
uncertain between x and y

● More insight into user’s cost function, as
we know that x and y are similar

● Observation space: O(t) = (x, y, x͠y),
where x͠y - uncertain response

● Learn (c, ε) pair, but objective is on c only

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

Equivalence Class Determination

● Rather than trying to find a specific
pair of (c, ε) focus on finding an
equivalent class (similar/indifferent
hypothesis within the same space)

● Considered finding an equivalence
class of different sizes

● Tests and information learned
about (c, ε) are main factors of
similarity search

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

Experiments and Results

● Less queries, especially if
more epsilons (bigger
equivalence class size)

● Users enjoyed the CLAUS
model more than GBS, but
preference was almost the
same

● Authors tested two versions of
CLAUS but with mix of GBS

● Slightly lower accuracy

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

Plan

1. Active Learning Introduction
2. Active Learning and Pairwise Comparison

a. Active Comparison-Based Learning in Ranking
b. Active Learning Incorporating the User

3. Active Learning for Reward Functions
a. Non-Batch methods
b. Batch method

Active Preference-Based Learning of Reward
Functions

Goal

Goal of the paper is to learn reward functions from human preferences for a
dynamical system.

Typically in these settings a common approach to enforcing human preference is
demonstrations with Inverse RL

● VICE
● GAIL
● etc

What is a “dynamical system”?

Dealing with Rewards
Assumption: Preference reward function can be represented as a linear combination of the features

- rH to represent desired human preference for that state

Sum the rewards over an entire time series :

● So the reward over a trajectory would just be:

How does p(w) look like?

The scale of w does not change the actual relative rewards produced with w:

- Constrain ||w|| <= 1
- w lies within a unit ball
- Initial prior is uniform over the unit ball

Incorporating softmax

● Idea: Use p(It|w) to do Bayesian update on p(w)
○ More on this later

How do you generate queries?
Synthetically….

● “we want to find the next query such that it will help us remove as much volume (the integral of the
unnormalized pdf over w) as possible from the space of possible rewards”

How to optimize?

Sample w1, … , wM from p(w)

Taking one step back
● Part 1) Using Bayes’ to update the weights:

○ Metropolis algorithm to actually sample

● Part 2) Synthetically generate pairs of trajectories to give to human:
○ Optimize

The Algorithm

Plan

1. Active Learning Introduction
2. Active Learning and Pairwise Comparison

a. Active Comparison-Based Learning in Ranking
b. Active Learning Incorporating the User

3. Active Learning for Reward Functions
a. Non-Batch methods
b. Batch method

Previously…

● Trying to pick queries to satisfy:
○

Note this is the same as trying to maximize conditional entropy H(I|w).

Problem: Optimizing each query and waiting takes a long time. What if we batch
them? Then the objective becomes:

A few approaches
● Greedy:

● Medioid Selection: Cluster the B greedy vectors into b < B groups, pick one
vector from each group, the medioid.

Results

