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Using:
- the current model
- unlabelled input distr P(x)

Determine which new point, if:
- labeled for a cost
- trained on

would maximize some model performance 
metric.

Active learning

Useful if data collection difficult / costly.
Lower data requirements if queries chosen well.



Real-world scenarios

Demo

How do I do x?

I learned x!

Learning unknown robot skills Sensor placement for 
enhanced predictions

LLM knowledge acquisition



Paper: Active Learning with Statistical Models [Cohn 96]

Expected model change
Expected error reduction
Variance reduction
Uncertainty reduction
Ensemble disagreement reduction
Diversity increase
Conformal prediction

(Task: regression)

https://en.wikipedia.org/wiki/Conformal_prediction


Which new point                 , 
for which the model currently believes                    , 
if annotated as         and added to the training data    , 
would potentially lower the expected variance of the learner 
across         ?

Without the true label         and without re-training, 
we visualize a hypothetical future where the model 
is actually trained on                 ,
using                       as a proxy for         .

Paper: Active Learning with Statistical Models [Cohn 96]
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train

probe

Model

…choose



Paper: Active Learning with Statistical Models [Cohn 96]

Next:

1. Mathematical description of expected learner variance (ELV)

2. Active learning algorithm to minimize ELV (for any model)

3. Closed-form ELV for 2 specific models 
(Gaussian mixture, locally-weighted regression)



Expected error at x (across choosable datasets and annotations)

D being picked, P(D) may be very different from P(x,y)

Stochasticity in annotations

Noise in annotation of x
(independent of learner)

Learner squared bias at x

Learner variance at x

Learner variance at x



Expected learner variance at x 
across estimated label belief 

Learner variance at x

Learner variance at x, if add           to training set

Expected learner variance across input distr

Expected learner variance



ALgorithm to minimize ELV

    = {} or init randomly

Each iter:

Sample candidate points                         from 

Compute current belief                       for each point.

Calculate                      on each point using belief

Calculate ELV integral via Monte Carlo sampling from           

Label point with lowest ELV: 

Retrain on 



Models with closed form expected learner variance 

Mixture of gaussians Locally-weighted regression



Models with closed form expected learner variance 



Experiment contrasting both models / algorithms
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Problem Definition

A ranking over a set of n objects Θ = (θ1,θ2,...,θn) is a mapping σ : {1,...,n} → {1,...,n} that 
prescribes an order

σ(Θ) := θσ(1) ≺ θσ(2) ≺ ··· ≺ θσ(n−1) ≺ θσ(n) where θi ≺ θj means θi precedes θj in the ranking.

● Total possible number of rankings is n!
● Ranking of n objects can be done with standard sorting methods using nlogn 

pairwise comparisons, if the comparisons are picked at random for every 
query qi,j := {θi ≺ θj }

● Find a way to decrease the nlogn, this specific case dlogn  

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Reasoning and Motivation

● Most work in ranking assumes a passive approach of doing all the rankings
● This might be inefficient since some comparisons don’t give that much value, 

and humans can be costly 
● Applications of this are quite popular and common
● What if we take the idea of human knowledge and transfer it to machine
● Specifically consider the geometric approach of using the embedding space 

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Notations and assumptions

● Objects can be embedded in Rd 
● θ1 , . . . , θn  their locations in Rd  
● Every ranking σ can be specified by a reference point rσ ∈ Rd, if the σ ranks 

θi ≺ θj, then ||θi − rσ|| < ||θj − rσ|| 
● Σn,d - set of all possible rankings of the n objects that satisfy this embedding 

condition 
● Mn(σ) - the number of pairwise comparisons to identify the ranking σ. We will 

reason about E[Mn]
● qi,j - the query of comparison between objects i and j

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).
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Embedding Space

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

● label of qi,j is binary and denoted as yi,j := 1{qi,j} 
(e.g. y1,2=0, y3,2=1)

● The dotted/dashed lines represents potential 
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● With the dotted line label of the query might be 
different depending on whether we are 
comparing with 2 (label 0) or 1 and 3 (label 1). 
Thus, we need an actual comparison to know for 
sure where that element stands in the ranking.

● With the dashed line label of the query is 
always 1 and it can be inferred using the labels of 
other queries



Embedding Space

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

● label of qi,j is binary and denoted as yi,j := 1{qi,j} 
(e.g. q1,2=0, q2,3=1)

● The dotted/dashed lines represents potential 
queries of one of the three elements with a new 
element

● With the dotted line label of the query might be 
different depending on whether we are 
comparing with 2 (label 0) or 1 and 3 (label 1). 
Thus, we need an actual comparison to know for 
sure where that element stands in the ranking.

● With the dashed line label of the query is 
always 1 and it can be inferred using the labels of 
other queries

● Dotted lines is the queries for which we 
actually want to use the human
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and Q(n, 0) = 1)

|Σn,d| = Q(n,d) = Q(n−1,d) + (n−1) * Q(n−1,d−1) 
- follows a 1D idea of inserting a new element into 
a list of elements

|Σn,d| = Q(n,d) = Θ(n2d) 
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Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

|Σn,d| - set of all possible rankings that satisfy the 
embedding conditions 

Q(i,j) - number of rankings that exist for i 
elements in j-dimensional space (e.g. Q(1,d) = 1 
and Q(n, 0) = 1)

|Σn,d| = Q(n,d) = Q(n−1,d) + (n−1) * Q(n−1,d−1) 
- follows a 1D idea of inserting a new element into 
a list of elements

|Σn,d| = Q(n,d) = Θ(n2d) 

P(k,d) - number of rankings 
that are possible to be true for 
query with a new element k+1

Requestqi, k+1 = P(k,d)/Q(k,d)

High value means the 
probability of this request being 
ambiguous is high, so higher 
probability of it getting picked

E[Mn] = O(2dlogn)

But what if that one human 
is not good?



Robust Sequential Algorithm

● Same idea but uses majority voting
● However, a group of people can still consistently give incorrect response
● Thus, the authors are hoping that majority voting can get at least a partial 

ranking of the objects

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Results

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).

*|Σn,d| = nd
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What if Active Learning knowledge did not come from data or embeddings but 
directly from the user? 

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on 
Model Learning for Human-Robot Communication (2016).



Problem Formulation

c - cost function to be determined with fewest possible 
questions

H - given discrete set of hypothesis

Ch - cost function associated with hypothesis h 

h* - true hypothesis 

t(x,y) - performed test on comparing x and y

O = x > y or x < y - observation from t(x,y)

S = {(t1, o1), … (tm, om)} - sequence of m tests and 
observations

w(H | S) - probability mass of all hypothesis that are still 
consistent

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on 
Model Learning for Human-Robot Communication (2016).
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H - given discrete set of hypothesis

Ch - cost function associated with hypothesis h 

h* - true hypothesis 

t(x,y) - performed test on comparing x and y

O = x > y or x < y - observation from t(x,y)

S = {(t1, o1), … (tm, om)} - sequence of m tests and 
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w(H, S) - probability mass of all hypothesis that are still 
consistent

Noiseless setting:

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on 
Model Learning for Human-Robot Communication (2016).



User Noise Modeling

● Users are not perfect, which may result in poor performance
● Majority of prior research applied noise to all queries to account for user
● This is not an accurate representation of real-world behaviour, noise should 

be “query-dependent” - supported in psychology literature
● Prior literature derived logistic model based on Luce-Sheppard’s rule to 

account for the noise
● p((t, o = x) | h) ∝ exp (−γ*ch(x))

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on 
Model Learning for Human-Robot Communication (2016).



CLAUS

● Allowing users to express uncertainty will 
increase satisfaction and algorithm 
efficiency

● Using cost function c, uncertainty is ε 
where if |c(x) − c(y)| < ε the user is 
uncertain between x and y

● More insight into user’s cost function, as 
we know that x and y are similar

● Observation space: O(t) = (x, y, x͠y), 
where x͠y - uncertain response

● Learn (c, ε) pair, but objective is on c only

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on 
Model Learning for Human-Robot Communication (2016).



Equivalence Class Determination

● Rather than trying to find a specific 
pair of (c, ε) focus on finding an 
equivalent class (similar/indifferent 
hypothesis within the same space)

● Considered finding an equivalence 
class of different sizes 

● Tests and information learned 
about (c, ε) are main factors of 
similarity search

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on 
Model Learning for Human-Robot Communication (2016).



Experiments and Results

● Less queries, especially if 
more epsilons (bigger 
equivalence class size)

● Users enjoyed the CLAUS 
model more than GBS, but 
preference was almost the 
same

● Authors tested two versions of 
CLAUS but with mix of GBS

● Slightly lower accuracy 

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on 
Model Learning for Human-Robot Communication (2016).
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Active Preference-Based Learning of Reward 
Functions



Goal

Goal of the paper is to learn reward functions from human preferences for a 
dynamical system. 

Typically in these settings a common approach to enforcing human preference is 
demonstrations with Inverse RL

● VICE
● GAIL
● etc



What is a “dynamical system”?





Dealing with Rewards
Assumption: Preference reward function can be represented as a linear combination of the features

- rH to represent desired human preference for that state

Sum the rewards over an entire time series :

● So the reward over a trajectory would just be: 



How does p(w) look like?

The scale of w does not change the actual relative rewards produced with w:

- Constrain ||w|| <= 1
- w lies within a unit ball
- Initial prior is uniform over the unit ball



Incorporating softmax

● Idea: Use p(It|w) to do Bayesian update on p(w)
○ More on this later



How do you generate queries?
Synthetically…. 

● “we want to find the next query such that it will help us remove as much volume (the integral of the 
unnormalized pdf over w) as possible from the space of possible rewards”



How to optimize?

Sample w1, … , wM from p(w) 



Taking one step back
● Part 1) Using Bayes’ to update the weights:

○ Metropolis algorithm to actually sample

● Part 2) Synthetically generate pairs of trajectories to give to human:
○ Optimize



The Algorithm
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Previously…

● Trying to pick queries to satisfy:
○

Note this is the same as trying to maximize conditional entropy H(I|w).

Problem: Optimizing each query and waiting takes a long time. What if we batch 
them? Then the objective becomes: 



A few approaches
● Greedy:

● Medioid Selection: Cluster the B greedy vectors into b < B groups, pick one 
vector from each group, the medioid.



Results


