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1. Active Learning Introduction



Active learning
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Valuable labeled dataset

Useful if data collection difficult / costly.
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Paper: Active Learning with Statistical Models [Cohn 96]

(Task: regression)
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Valuable labeled dataset

Active learning

Expected model change
Expected error reduction
Variance reduction

Uncertainty reduction

Ensemble disagreement reduction
Diversity increase

Conformal prediction


https://en.wikipedia.org/wiki/Conformal_prediction

Paper: Active Learning with Statistical Models [Cohn 96]

Which new point & ~ P(z),

for which the model currently believes P(Y|X = %),

if annotated as y(#)and added to the training data D,
would potentially lower the expected variance of the learner

across P(x)? /

Without the true label y(:ﬁ)and without re-training,
we visualize a hypothetical future where the model
is actually trained on (&, f(Z)),

using P(Y|X = %)as a proxy for y(Z).




Paper: Active Learning with Statistical Models [Cohn 96]
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we visualize a hypothetical future where the model
E1y-- ey & ~ P(x) is actually trained on (Z, f(Z)),

using P(Y|X = %)as a proxy for y(Z).



Paper: Active Learning with Statistical Models [Cohn 96]

Next:
1. Mathematical description of expected learner variance (ELV)
2. Active learning algorithm to minimize ELV (for any model)

3. Closed-form ELV for 2 specific models
(Gaussian mixture, locally-weighted regression)



Learner variance at x

Expected error at x (across choosable datasets and annotations)

5 (§(z; D) — y(=))? ]

P(Y|X — m) ....................................................... . Stochasticity in annotations

P(D) ........................................................................... » D being picked, P(D) may be very different from P(X,y)

y|:c [(y(w) _ E y| CB] )2] ....................................................... . :\;zgseepignzr;zitg;iloer;f:;)
1 (ED [:& (w, D) — K [y| w] )2 --------------------------------------- - Learner squared bias at x
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Expected learner variance

Learner variance at x

0% (¢, D) = Ep|(9(x; D) — Epli(x; D)])’]

D=DU(Z,7)

Learner variance at x, if add (Z, ¢) to training set

52 (z,D) = Ep[(§(x; D) — Ep[i(z; D)))*]
(5%(2, D)) = Epy1x-5)[07] o mivass

fCIZ P(,CL‘) <5':2& ({Ij‘, D) > daj Expected learner variance across input distr




ALgorithm to minimize ELV

arg min [ P(x)(5%(z, D))dx

& € P(x) y

‘D= {} or init randomly
Each iter:
Sample candidate points Z1, - .., Zm from P(z)
Compute current belief P(Y|X = %) for each point.
{Calculate <5§ (2, D)) on each point using belief
{Calculate ELV integral via Monte Carlo sampling from P(z)
Label point with lowest ELV: &* — y(Z*)

D=Du{(z",y(z"))}

Retrain on D



Models with closed form expected learner variance
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Locally-weighted regression




Models with closed form expected learner variance
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Experiment contrasting both models / algorithms

Figure 4: The arm kinematics problem. The learner attempts to predict tip position given
a set of joint angles (6,65).
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Figure 5: Variance and MSE learning curves for mixture of 60 Gaussians trained on the
Arm2D domain. Dotted lines denote standard error for average of 10 runs, each
started with one initial random example.



0.001 .
i — s random
i —a—— variance
0.0004 -
Var H
0.0002 -
0.0001 1
5e-05 - .

T T T T T T T T

50 100 150 200 250 300 350 400 450 5

training set size

10
——— random
—~—— variance

msi’

0.01

0.001

0.0001 T T T T 1 | | | T ]
50 100 150 200 250 300 350 400 450 500
training set size

Figure 6: Variance and MSE learning curves for LOESS model trained on the Arm2D do-
main. Dotted lines denote standard error for average of 60 runs, each started

with a single initial random example.
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2. Active Learning and Pairwise Comparison
a. Active Comparison-Based Learning in Ranking

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Problem Definition

A ranking over a set of n objects © = (01,02,...,0n) is a mapping o : {1,...,n} — {1,...,n} that
prescribes an order

0(0) :=00(1) < 00(2) < --- < Bo(n-1) < Bo(n) where Bi < 8j means Bi precedes 0j in the ranking.

e Total possible number of rankings is n!

e Ranking of n objects can be done with standard sorting methods using nlogn
pairwise comparisons, if the comparisons are picked at random for every
query qi;:={0i<06;}

e Find a way to decrease the nlogn, this specific case dlogn

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Reasoning and Motivation

e Most work in ranking assumes a passive approach of doing all the rankings

e This might be inefficient since some comparisons don’t give that much value,
and humans can be costly

e Applications of this are quite popular and common

e \What if we take the idea of human knowledge and transfer it to machine

e Specifically consider the geometric approach of using the embedding space
IEXT Select This Power

+3.50  Select This Power
Select This Power
Select This Power

eeeeeeeeeeeeeee

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Notations and assumptions

e Objects can be embedded in R?

e 0,,...,0 theirlocationsin R¢

e Every ranking o can be specified by a reference pointr_ € RY, if the o ranks
0. < Gj, then |16, = r || < ||9j -r ||

o Zn,d - set of all possible rankings of the n objects that satisfy this embedding
condition

e M (o) - the number of pairwise comparisons to identify the ranking o. We will
reason about E[M ]

* Q- the query of comparison between objects i and j

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Embedding Space

o label of q; is binary and denoted as Y= 1{qij}
(e'g' y1’2=0! Y3,2=1)

Figure 2: Objects 64, 05, 05 and queries. The
r, lies in the shaded region (consistent with the
labels of ¢ 2,¢1,3,92,3). The dotted (dashed)
lines represent new queries whose labels are
(are not) ambiguous given those labels.

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Embedding Space
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element

Figure 2: Objects 64, 05, 05 and queries. The
r, lies in the shaded region (consistent with the
labels of ¢ 2,¢1,3,92,3). The dotted (dashed)
lines represent new queries whose labels are
(are not) ambiguous given those labels.

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Embedding Space
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Figure 2: Objects 64, 05, 05 and queries. The
r, lies in the shaded region (consistent with the
labels of ¢ 2,¢1,3,92,3). The dotted (dashed)
lines represent new queries whose labels are
(are not) ambiguous given those labels.

label of q; is binary and denoted as Y= 1{qi’j}
(e.g. y1,2=0, y3,2=1)

The dotted/dashed lines represents potential
queries of one of the three elements with a new
element

With the dotted line label of the query might be
different depending on whether we are
comparing with 2 (label 0) or 1 and 3 (label 1).
Thus, we need an actual comparison to know for
sure where that element stands in the ranking.
With the dashed line label of the query is
always 1 and it can be inferred using the labels of
other queries

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Embedding Space

&

Figure 2: Objects 64, 05, 05 and queries. The
r, lies in the shaded region (consistent with the
labels of ¢ 2,¢1,3,92,3). The dotted (dashed)
lines represent new queries whose labels are
(are not) ambiguous given those labels.

label of q; is binary and denoted as Y= 1{qi’j}
(e.g. q,,=0, q,,=1)

The dotted/dashed lines represents potential
queries of one of the three elements with a new
element

With the dotted line label of the query might be
different depending on whether we are
comparing with 2 (label 0) or 1 and 3 (label 1).
Thus, we need an actual comparison to know for
sure where that element stands in the ranking.
With the dashed line label of the query is
always 1 and it can be inferred using the labels of
other queries

Dotted lines is the queries for which we
actually want to use the human

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Sequential Algorithm

Query Selection Algorithm

input: n objects in R¢
initialize: objects 64,...,60, in uniformly
random order

for j=2,...,n
fori=1,... -1
if g; ; is ambiguous,
request g; ;’s label from reference;
else
impute g; ;’s label from previously
labeled queries.

output: ranking of n objects

Figure 1: Sequential algorithm for selecting
queries. See Figure 2 and Section 4.2 for the
definition of an ambiguous query.

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Sequential Algorithm

Definition 3. /9] Let S be a finite subset of R® and let ST C S be points labeled +1 and S~ =
S\ ST be the points labeled —1 and let = be any other point except the origin. If there exists two
. . homogeneous linear separators of ST and S~ that assign different labels to the point x, then the
Query Selection Algorithm label of x is said to be ambiguous with respect to S.

input: n objects in R¢

initialize: objects 64, ...,6, in uniformly
random order

for j=2,...,n
fori=1,... -1
if g; ; is ambiguous,
request g; ;’s label from reference;
else
impute g; ;’s label from previously
labeled queries.

output: ranking of n objects

Figure 1: Sequential algorithm for selecting
queries. See Figure 2 and Section 4.2 for the
definition of an ambiguous query.

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Sequential Algorithm

Query Selection Algorithm

input: n objects in R?
initialize: objects 6y, ...
random order

, 0, in uniformly

for j=2,...,n
fori=1,... -1
if g; ; is ambiguous,
request g; ;’s label from reference;
else
impute g; ;’s label from previously
labeled queries.

output: ranking of n objects

Figure 1: Sequential algorithm for selecting
queries. See Figure 2 and Section 4.2 for the
definition of an ambiguous query.

Definition 3. /9] Let S be a finite subset of R® and let ST C S be points labeled +1 and S~ =
S\ ST be the points labeled —1 and let = be any other point except the origin. If there exists two
homogeneous linear separators of ST and S~ that assign different labels to the point x, then the
label of x is said to be ambiguous with respect to S.

2n,d - set of all possible rankings that satisfy the
embedding conditions

Q(i,j) - number of rankings that exist for i
elements in j-dimensional space (e.g. Q(1,d) =1
and Q(n, 0) =1)

|Zn,d| = Q(n,d) = Q(n-1,d) + (n=1) * Q(n-1,d-1)
- follows a 1D idea of inserting a new element into

a list of elements

|Zn,d| = Q(n,d) = ©(n2)

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Sequential Algorithm

Query Selection Algorithm

input: n objects in R?
initialize: objects 6y, ...
random order

, 0, in uniformly

for j=2,...,n
fori=1,... -1
if g; ; is ambiguous,
request g; ;’s label from reference;
else
impute g; ;’s label from previously
labeled queries.

output: ranking of n objects

Figure 1: Sequential algorithm for selecting
queries. See Figure 2 and Section 4.2 for the
definition of an ambiguous query.

Definition 3. /9] Let S be a finite subset of R® and let ST C S be points labeled +1 and S~ =
S\ ST be the points labeled —1 and let = be any other point except the origin. If there exists two
homogeneous linear separators of ST and S~ that assign different labels to the point x, then the
label of x is said to be ambiguous with respect to S.

M, = 22;11 le 1{Request g; x+1}
|Zn,d| - set of all possible rankings that satisfy the

embedding conditions P(k,d) - number of rankings

that are possible to be true for
Q(i,j) - number of rankings that exist for i query with a new element k+1
elements in j-dimensional space (e.g. Q(1,d) =1

and Q(n, 0) =1) Request = P(k,d)/Q(k,d)

qi, k+1

|Zn,d] = Q(n,d) = Q(n-1,d) + (n—-1) * Q(n-1,d-1)
- follows a 1D idea of inserting a new element into
a list of elements

|Zn,d| = Q(n,d) = ©(n2d)

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Sequential Algorithm

Definition 3. /9] Let S be a finite subset of R® and let ST C S be points labeled +1 and S~ =
S\ ST be the points labeled —1 and let = be any other point except the origin. If there exists two

" . homogeneous linear separators of ST and S~ that assign different labels to the point x, then the
Query Selection Algorithm label of x is said to be ambiguous with respect to S.
input: n objects in R¢ My = 3303 Soisy 1{Request g4 }
initialize: objects 6,,...,60, in uniformly | |Zn,d|- setof all possible rankings that satisfy the '
random order embedding conditions P(k,d) - number of rankings
for j=2,...,n that are possible to be true for
for i—,l ’ 1 Q(i,j) - number of rankings that exist for i query with a new element k+1
if q__ ’1s ‘61’;]11bigu0us elements in j-dimensional space (e.g. Q(1,d) = 1
,J , ’ d ,0)=1 Request . . =P(k,d)/Q(k,d
request g; ;’s label from reference; and Q(n, 0)=1) questy, u = Plkod)/Qlkd)
else i _ |Zn,d| = Q(n,d) = Q(n-1,d) + (n-1) * Q(n-1,d-1)  High value
1Impute g; j §label from previously - follows a 1D idea of inserting a new element into Probabity of this request being
fabeled queries. alistof elements agggtl;iﬁtu Cof ir Igeht’tirsmo h?‘iﬂi&
output: ranking of n objects P yoritgeting p

|Zn,d| = Q(n,d) = ©(n2d) i}
Figure 1: Sequential algorithm for selecting EIM,] = O(2dlogn)
queries. See Figure 2 and Section 4.2 for the

definition of an ambiguous query.

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Sequential Algorithm

Definition 3. /9] Let S be a finite subset of R® and let ST C S be points labeled +1 and S~ =
S\ ST be the points labeled —1 and let = be any other point except the origin. If there exists two

" . homogeneous linear separators of ST and S~ that assign different labels to the point x, then the
Query Selection Algorithm label of x is said to be ambiguous with respect to S.
input: n objects in R¢ My = 3303 Soisy 1{Request g4 }
initialize: objects 6,,...,60, in uniformly | |Zn,d|- setof all possible rankings that satisfy the '
random order embedding conditions P(k,d) - number of rankings
for j=2,...,n that are possible to be true for
for i—,l ’ 1 Q(i,j) - number of rankings that exist for i query with a new element k+1
if q__ ’1s ‘61’;]11bigu0us elements in j-dimensional space (e.g. Q(1,d) = 1
,J , ’ d ,0)=1 Request . . =P(k,d)/Q(k,d
request g; ;’s label from reference; and Q(n, 0)=1) questy, u = Plkod)/Qlkd)
else i _ |Zn,d| = Q(n,d) = Q(n-1,d) + (n-1) * Q(n-1,d-1)  High value
1Impute g; j §label from previously - follows a 1D idea of inserting a new element into Probabity of this request being
fabeled queries. alistof elements agggtl;iﬁtu Cof ir Igeht’tirsmo h?‘iﬂi&
output: ranking of n objects P yoritgeting p

|Zn,d| = Q(n,d) = ©(n2d) i}
Figure 1: Sequential algorithm for selecting EIM,] = O(2dlogn)
queries. See Figure 2 and Section 4.2 for the

definition of an ambiguous query. But what if that one human

is not good?

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Robust Sequential Algorithm

e Same idea but uses majority voting

e However, a group of people can still consistently give incorrect response

e Thus, the authors are hoping that majority voting can get at least a partial
ranking of the objects

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Table 1: Statistics for the algorithm robust to
persistent noise of Section 5 with respect to
all (’g) pairwise comparisons. Recall y is the
noisy response vector, y is the embedding’s
solution, and ¢ is the output of the robust al-

gorithm.
Dimension 2 3
% of queries | mean | 14.5 | 18.5
. L requested std 5.3 6
Dimension Average error Ellgy, qg 8%? 8%;
Figure 3: Mean and standard deviation of re- 9Y : '

quested queries (solid) in the noiseless case for
n = 100; log, |2, 4| is a lower bound (dashed).

Jamieson, Kevin G., and Robert Nowak. "Active ranking using pairwise comparisons." Advances in neural information processing systems 24 (2011).



Plan

2. Active Learning and Pairwise Comparison
a.
b. Active Learning Incorporating the User

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).



What if Active Learning knowledge did not come from data or embeddings but
directly from the user?

i1

Left is shorter. | am not sure. R/ght is shorter.

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).



Problem Formulation

¢ - cost function to be determined with fewest possible
questions

H - given discrete set of hypothesis

C, - cost function associated with hypothesis h
h* - true hypothesis

t(x,y) - performed test on comparing x and y
O =x >y or x <y - observation from t(x,y)

S ={(t,, 0,), ... (t_, 0. )} - sequence of m tests and
observations

w(H | S) - probability mass of all hypothesis that are still
consistent

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).



Problem Formulation

¢ - cost function to be determined with fewest possible Noiseless Settmg:

questions

wH|S) =) wh|S)
H - given discrete set of hypothesis heH
C, - cost function associated with hypothesis h w(h|8) =p(S|h)

We assume that the sequence of test-observation pairs (¢, 0)
in S is independent:

h* - true hypothesis
t(x,y) - performed test on comparing x and y p(S|h) = H p((t,0) | h)
O =x >y or x <y - observation from t(x,y) (to)es

In the noiseless setting, we assume the user always selects

S ={(t,, 0,), ... (t_, 0. )} - sequence of m tests and the item that minimizes their cost function:
observations
_aimo{ 1 @ <a
N _ _ p((t,o=1z) | h) 0 else
w(H, S) - probability mass of all hypothesis that are still

consistent

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).



User Noise Modeling

e Users are not perfect, which may result in poor performance

e Majority of prior research applied noise to all queries to account for user

e This is not an accurate representation of real-world behaviour, noise should
be “query-dependent” - supported in psychology literature

e Prior literature derived logistic model based on Luce-Sheppard’s rule to

account for the noise A[ A[ _ A[ N
e p(to=x)|h)yecexp(-y'c(x) " | =L | " = | |
(a) GBS (Left) (b) GBS (Right) (c) CLAUS (Left) (d) CLAUS (Equal) (e) CLAUS (Right)

Fig. 2: User response model in the noiseless setting

PEAS VN

s L L L s L L L m s L s L
-L 0 L -L 0 _L -L 0 L -L 0 _L -L 0 L
5 = = 7 i e i il = =

P(Left)
P(Left)
P(Equal)
P(Right)

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).

P(Right)

(a) GBS (Left) (b) GBS (Right) (c) CLAUS (Left) (d) CLAUS (Equal) (e) CLAUS (Right)
Fig. 3: Luce Sheppard noise model



CLAUS

e Allowing users to express uncertainty will _ R
Let c;, be the cost function of the hypothesis, and €, is the

increase satisfaction and algorithm uncertainty parameter. In the noiseless setting, we assume user
efficiency response corresponds to:

e Using cost function ¢, uncertainty is € p((t,0 =) | b) :{ o chlm) < el —e
where nf |lc(x) = c(y)| < € the user is (o= 511 :{ 1 Jon(@) — en(@)|? < &
uncertain between x and y 0 else

e More InS|ght into user’s cost function, as We extend this to model noise, stemming from the Luce-

. Sheppard model from Sec. II-C.
we know that x and y are similar
PY Observatlon Space O(t) — (X, y, X’V) p((t,0 =) | h) oc exp (—y(cn(z) — cn(y)))
’ _ 1
where Xy - uncertain response p((t,0 = y) | h) o exp (—% [en(2) —Ch(y)l2) c

e Learn (c, €) pair, but objective is on ¢ only

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).



Equivalence Class Determination

e Rather than trying to find a specific

pair of (c, €) focus on finding an =o€
equivalent class (similar/indifferent %: £ 5
hypothesis within the same space) >
e Considered finding an equivalence
class of different sizes
o Testsand information leamed e ko e e e n Homi
about (c, €) are main factors of =~ uing s cost ¢ are sid to be inide the cquivalnco cluss of ¢, The

C : in different equivalence classes. After performing a test and receiving an
SI mllarlty SearCh observation, the evidence results in downweighting some hypotheses, which
in turn downweights the edges they connect to.

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).



38

: 36
Experiments and Results -
5 32
9 30
- SNTIE g 28
e Less queries, especially if 2
more epsilons (bigger - | . . :
eqL“VaIence ClaSS SIZG) 0.00 0.05 0.10 .0.15 0.20
] User’s True Epsilon
o U sers enJ Oyed the C LAU S Fig. 5: We compare the affect of the number of epsilons on CLAUS’s query
count across the user’s €*. We also §how tPe query count of GBS. Note .t}.lat
mo d el more th an G B S, but gilefr; v:;}; 1(;lsleerr i:ptrhe:rsleé ;réy uncertainty, €* > 0, all CLAUS methods utilize
preference was almost the TABLET: Avcusey aud Quesy Court
Catego Accurac; Query Coun
Sa m e GBS - AtbiuI;yEqual 94.15 + 0.532, 36.0;y:|: 0.0?:
e Authors tested two versions of CLAUS - El())(tmstu]gzlual o156 4081 2595 & 041

CLAUS - Not Sure 90.86 £0.74 26.98 +0.47

CLAUS but with mix of GBS
e Slightly lower accuracy

TABLE II: CLAUS Parameters

Category Marked Uncertainty Epsilon
About Equal 7.80£0.70 0.07+0.00
Not Sure 5.57+0.71 0.06 +0.01

Rachel Holladay and Shervin Javdani and Anca Dragan and Siddhartha Srinivasa. "Active Comparison Based Learning Incorporating User Uncertainty and Noise." Proceedings of RSS '16 Workshop on
Model Learning for Human-Robot Communication (2016).
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b.

3. Active Learning for Reward Functions
a. Non-Batch methods



Active Preference-Based Learning of Reward
Functions



Goal

Goal of the paper is to learn reward functions from human preferences for a
dynamical system.

Typically in these settings a common approach to enforcing human preference is
demonstrations with Inverse RL

e VICE
e GAIL
e etc



What is a “dynamical system”?

xt+1 = fHR(xt, UR, uH). (1)

Lo |

We define a trajectory ¢ € &E, where { =

(x0,u®,ud), ..., (xN,uk,ulY) is a finite horizon sequence

¢(xt, uby, ut;) € ]Rd‘

~~



(a) Preference query.



Dealing with Rewards

Assumption: Preference reward function can be represented as a linear combination of the features
- rH to represent desired human preference for that state

t

ru(x', uk, uh) = w' (x', uk, uiy),

Sum the rewards over an entire time series :

N
Ru(x%, ug,uy) = ¥ ru(xt,ut,uly)
=0

@ = il p(x', up, ufy)

e So the reward over a trajectory would just be:




How does p(w) look like?

The scale of w does not change the actual relative rewards produced with w:

- Constrain ||w]|| <= 1
- w lies within a unit ball
- Initial prior is uniform over the unit ball



Incorporating softmax

6 exp(Rp(8a)) _
exp(Rp(¢4))+exp(Ru(SB)) I =+1
p(I|lw) = «
exp(Ru(¢B)) I — 1
( exp(Ry(€a))+exp(Ry(p)) F

e Idea: Use p(l|w) to do Bayesian update on p(w)
o More on this later

p(w|l;) < p(w) - p(I;|w). ]

fo(w) = p(lt|w) =

1+exp(—Lw'g)

¢ =D(5a) — P(¢B)




How do you generate queries?
Synthetically....

e “we want to find the next query such that it will help us remove as much volume (the integral of the
unnormalized pdf over w) as possible from the space of possible rewards”

max min{E[l — fo(w)], E[1 — f_o(w)]} . . 1
su(:)ject to o€ F folw) = plliiw) = 1+exp(—Lw'g)

F={¢:9=2=>(a)—P(B).Ga B EE,

= (x),ug) = (*°,ug)}

max min{E[1 — fo(w)], E[1 — f-¢(w)]}

20 ug,uftub




How to optimize?

max min{E[1 — fo(W)],E[1 — f_o(W)]}

20 ug,uftub

Sample w,, ..., w,, from p(w)

1 M
p(w) ~ M ;5(Wi)-

Then the volume removed by an update f,(w) ¢
approximated by:
1 M
E[1 - fo(w)] =~ 72 ) (1 — fo(wi)).
=1

Z




Taking one step back

Part 1) Using Bayes’ to update the weights:

o Metropolis algorithm to actually sample

p(wll;) o« p(w) - p(It|w).

¢ =®(Ca) —P(CB)

fo(w) =p

(It|w) =

1

1+ exp(—LwTg)

Part 2) Synthetically generate pairs of trajectories to give to human:
o Optimize

max

x0ug,uf,uf

min{E[1 — fo(w)], E[1 — f-(w)]}

E[1—

1

E

i (1

1=1

— fo(wi)).




The Algorithm

Algorithm 1 Preference-Based Learning of
Reward Functions

1: Input: Features ¢, horizon N, dynamics f, iter
2: Output: Distribution of w: p(w)

3: Initialize p(w) ~ Uniform(B), for a unit ball B
4: While t < iter:

(x0,ug, ufl, ub)) « SynthExps(W, f)
I; + QueryHuman(x°, ug, uf}, u¥)
¢ = ®(x°, ug, ufl) — ®(x%, ug, uff)
fo(w) = min(1, T exp(w "))

10:  p(w) < p(w) - fp(w)

11: t+«t+1

12: End for

o N

W < M samples from AdaptiveMetropolis(p(w))
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3. Active Learning for Reward Functions

b. Batch method



Previously...

e Trying to pick queries to satisfy:

; max  min{E[1 — fo(w)], E[1 - f—o(w)]}

subjectto ¢ € F

Note this is the same as trying to maximize conditional entropy H(I|w).

Problem: Optimizing each query and waiting takes a long time. What if we batch
them? Then the objective becomes:

&~ Y

max H(Lib+1, Lib+2, - - - L1y w)
§iv+14:8ib+15,--8G+1)b 4 € (i+1)bg




A few approaches
o Greedy:

max  H(Lpp1|lw) +---+ max H(L(i+1)p|w)

Eib+1 4,8ib+1pg E(i+1)b 4 €(i+1)b g

e Medioid Selection: Cluster the B greedy vectors into b < B groups, pick one
vector from each group, the medioid.

o K ® e 0P as
@ L ® ([ ] 10

o o o @ = 6] ak 5;64'1

(a) Greedy Selection. (b) Medoids Selection. (c) Boundary Medoids Selection. (d) Successive Elimination.




Results
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