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Introduction to Meta Learning



Let’s Begin with an Example of “Classical” Learning

Task (1) 

Given a Spanish dataset, learn a model to speak Spanish.

Hola! 

Not Ideal! 
Slow and require too 

many data!



Another Example of “Classical” Learning

Task (2) 

Given a Japanese dataset, learn a model to speak Japanese.

こんにちは ! 

Not Ideal! 
Slow and require too 

many data!



More…Examples of “Classical” Learning

Task (N) 

Given a Alien language dataset, learn a model to speak Alien language.

✹❞▷▟▞◥◉◁◫ !

Can it learn to 
learn?



Meta Learning: Learning to Learn

Meta Task 

Given N language datasets, learn a new language more quickly/proficiently. 

Hola! 
こんにちは !
你好！
Hello!

✹❞▷▟▞ !

Learning (from past tasks) 
to learn (a new task).



A Formalism of “Classical” Learning

- A training dataset 𝐷 ; a test dataset 𝑆. 
- parameterized model 𝜃; training loss 𝐿(𝜃, 𝐷); test loss 𝐿(𝜃, 𝑆).
- The process of “Classical” Machine Learning:

- Denote the learning procedure as 𝒜:

- The test result:               

Classically: a predefined learning procedure 𝒜.
Meta learning: learning 𝒜!



A Formalism of Meta Learning

- A set of training datasets              ; a set of test dataset              .
- Parameterized model 𝜃; training loss 𝐿(𝜃, 𝐷); test loss 𝐿(𝜃, 𝑆).
- A family of learning algorithm 𝒜 parameterized by ω, given a dataset      :

 

Meta learning:                

What could 𝒜 be?



MAML: One of the Most Popular Meta Learning Method

- Recall our meta learning formalism: 

- Let meta-parameter ω and model parameter 𝜃 be from the same space.

- Model-Agnosic Meta-Learning (MAML): let the learning algorithm be one step 
of gradient update (fine-tuning) with step size 𝛼, i.e., 

- Interpretation: the meta-parameter ω is the initialization of fine-tuning.

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 2017



One Sentence Summary of Meta Learning

Given data from N tasks, 
solve a new task more quickly/proficiently.

What if the task is…
Preference Learning?
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Few-Shot Preference Learning for 
Human-in-the-Loop RL

Joey Hejna Dorsa Sadign

Stanford University



Motivation of Few-shot Preference Learning

- Problem: learning reward function for a RL robot require expensive 
preference queries from human.

- Solution: meta-learning solve a new task with few number of human queries if 
given a dataset of tasks for pre-training.

Meta-learning with prior tasks

Few-shot adaptation

Few-Shot Preference Learning



Problem Setup

- Given a state 𝑠, an action 𝑎, the reward function 𝑟(𝑠, 𝑎) is unknown.
- Each task has its own reward function and transition probabilities. 
- The reward model is parameterized by 𝜓.
- A reward model 𝜓 determines a RL policy 𝜙.
- Consider preferences over trajectory segments:  

- A dataset 𝐷 consists of labeled queries                   where 𝓎 is the label.
- A loss function                 captures how well the reward model 𝜓 characterizes 

the preferences in dataset 𝐷.

Few-Shot Preference Learning



Problem Setup (Define the Loss Function)

- A dataset 𝐷 consists of labeled queries                   where 𝓎 is the label.
- A segment of trajectory: 
-
- The loss function is binary cross entropy (CE): 

where

Few-Shot Preference Learning



Method Component 1: Pre-training with Meta Learning

- Given datasets              of labeled preferences queries for N Pretraining tasks;
- Train a reward model 𝜓 using MAML!

- Note: data              for prior tasks can come from offline datasets, simulated 
policies, or actual humans.

Few-Shot Preference Learning



Method Component 2: Few-shot Adaptation

- Given a pre-trained reward model 𝜓
- For time step 

- Find pairs of trajectories                with preference uncertainty based on 𝜓.
- Query human preference 𝓎 and forms a new dataset
- Update the reward model:

- Update the policy with the new reward model 𝜓’. 

Few-Shot Preference Learning



Method: Overview

-



Experimental Results

-



Conclusion and Discussions

- Conclusion: meta learning reward models reduce the number of queries of 
human preferences.

- Discussions:
- Many queries ask human to compare almost identical trajectories. 
- Despite the improved query complexity, it still needs an impractical 

amount of queries.
- If the new task is too out-of-distribution, training from scratch is better. 

Few-Shot Preference Learning
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Watch, Try, Learn
Meta-Learning from Demonstrations and Rewards
Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, 

Mrinal Kalakrishnan, Sergey Levine, Chelsea Finn



Motivation - What is the bottleneck for 
robotics progress?

- Key insight of the paper to 
bypass the bottleneck.

Watch, Try, Learn



Data is a key bottleneck

- LLMs have internet-scale datasets to train from, but there isn’t (yet) an 
equivalent for robotics.

- Data collection is expensive
- Robots are expensive, so people don’t have access to them.
- Human time is expensive, so it’s hard to collect a lot of demonstrations.

- Largest dataset today: Open X-Embodiment

Watch, Try, Learn



Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example: what task is this:

Watch, Try, Learn



Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example:

I’m going to show you a demonstration

Watch, Try, Learn



Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example:

We are now presented with this situation:

Watch, Try, Learn



Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example:

We try, and get feedback

Watch, Try, Learn



Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example: learn from demo and trial

Watch, Try, Learn



Summary of contributions

- Meta-learning algorithm for incorporating demos and binary feedback to solve 
new tasks.

- Especially applicable for robotics, where we can have many robots try things 
in parallel.

Watch, Try, Learn



Preliminaries - Meta-Learning Primer
- Tasks as MDPs

Watch, Try, Learn



Meta-Learning: Learning to learn new tasks.

- Single-task paradigm:
- Given a dataset {(x, y)k}, learn function fθ(x) → y.

- Meta-learning paradigm:
- Given a task distribution P(T),
- And data for n tasks coming from distributions {pi(x), pi(y | x)}i

n,
- Learn function f’(new task) -> (f(x) → y)

Watch, Try, Learn



Task as MDPs
- Define task Ti as finite-horizon MDP {S, A, ri, Pi}

- S, A are shared between tasks, reward function r and dynamics P are not.
- S is the space of RGB images.
- A is the space of end-effector positions, rotations, openings.
- Assume r is sparse (ri(s) = 1 if task i is completed at s).
- Pi is the (unknown) dynamics function Pi(st+1 | st, at)

- In the real world, there is only one dynamics function.
- This paper considers simulations, where there’s different objects per task.

- Tasks come from (unknown) distribution p(T).

Watch, Try, Learn



Problem statement

We ultimately want to obtain an 
agent that can

1) WATCH

2) TRY

3) LEARN

Watch, Try, Learn



Problem Statement: Watch, Try, Learn

- We give the agent K demonstrations of the target task
- K demonstrations {(s0, a0), …, (sH, aH)}i that succeed at target task.

- These demonstrations alone might not be sufficient for full task specification.

- Output of this phase: a policy capable of gathering information about a task 

given demonstrations.

��

Watch, Try, Learn



Problem Statement: Watch, Try, Learn

- Agent attempts the task for L trials.

- Humans provide one binary reward for each trial.

- Output of this phase: L trajectories and corresponding feedback that hopefully 

disambiguate the task.

��Watch, Try, Learn



Problem Statement: Watch, Try, Learn

- Agent learns from both demonstrations and trials

- Output of this phase: policy capable of solving the target task.

��🏼 🎓

Watch, Try, Learn



Problem Statement: What are we given?

- To train agents that can watch, try, and learn, we are given a dataset of expert 

demonstrations containing multiple demos per task.

Watch, Try, Learn



Method
- How do we train an agent from 

the expert demonstrations
- How do we train an agent from 

trials, human feedback, and 
demos

Watch, Try, Learn



- Sample task Ti with expert demonstrations {di,k}
- Train                         with meta-imitation learning:

- Sample another demonstration of the same task
- Regress                                to the actions taken on  

Concrete example:

Demo1         Demo2         Demo3         Demo4

Method: Training to Watch

Watch, Try, Learn



- Sample task Ti with expert demonstrations {di,k}
- Train                         with meta-imitation learning:

- Sample another demonstration of the same task
- Regress                                to the actions taken on  

Concrete example:

Demo1         Demo2         Demo3         Demo4

If the agent watches Demo1 and Demo2, it should act like Demo3 and Demo4

Method: Training to Watch

Watch, Try, Learn



- Sample task Ti with expert demonstrations {di,k}
- Train                         with meta-imitation learning:

- Sample another demonstration of the same task
- Regress                                to the actions taken on  

Concrete example:

Demo1         Demo2         Demo3         Demo4

If the agent watches Demo1 and Demo2, it should act like Demo3 and Demo4

Method: Training to Watch

Sample demos Sample optimal 
trajectory from the 
same task

For each timestep 
in the optimal 
trajectory

Maximize the likelihood of 
optimal actions given the 
demos.

Watch, Try, Learn



Method: How do we condition the policy on demos?

- Encode 40 ordered frames from the demos

- Concatenate with current observation features

Watch, Try, Learn



Method: What does the agent Try?

- When given demonstrations {di,k}, deploy                          to collect L trials.

- This is equivalent to exploring with Thompson sampling.

- Human labels each trial as success/failure.

Discussion Questions:

Watch, Try, Learn



- Want to train                                   to act optimally.
- We can use the same strategy as before, but conditioning also on the trials!

Method: Training to Learn from the trials

Watch, Try, Learn



Experiments - Gripper environment setup
- Baselines
- Results

Watch, Try, Learn



- Each task has two objects sampled from hundreds.
- Tasks are generally ambiguous given just 1 demo.

Gripper environments

Watch, Try, Learn



- Behavior Cloning: simply train with maximum log-likelihood on all tasks.

- Meta-imitation learning: Run the policy after the Watch step, with no trials.

- Behavior Cloning + SAC: BC pre-training followed by Reinforcement 

Learning with the task-specific data.

Baselines

Watch, Try, Learn



Results

Watch, Try, Learn



Discussion question

- Task distribution considered is pretty narrow - do you think this algo could 
learn entirely new tasks?

- Relevant posterior work: Decision-Pretrained Transformer.

- The L trials are independent, i.e. the policy has no idea what happened in 
other trials.

- What is one key advantage of this?
- What is one key disadvantage?

Watch, Try, Learn
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Learning Multi-modal Rewards from Ranking
Vivek Myers, Erdem Bıyık, Nima Anari, Dorsa Sadigh



Intro to Reward Learning Problem
We want the a robot to perform a specific task

Internal reward 
function

R(ξ)
R(ξ) = ?

Learning Multi-modal Rewards from Ranking



Learning Multi-modal Rewards from Ranking

Learning based on Comparison
The robot can show different trajectories to the user

User indicates preferences → Robot learns reward function

ξA or ξB

Pairwise Comparison

ξA ξB



Learning Multi-modal Rewards from Ranking

Pairwise Comparison

Learning a 
Reward 

Function from 
Human Data

Expert Demonstrations

Suboptimal 
Demonstrations

Physical Corrections

ALL UNDER THE ASSUMPTION THAT THE MODEL IS UNIMODAL … BUT WHAT DOES THAT MEAN ???

Ranking

Trajectory 
Assessments



Example One: Autonomous Vehicle Simulation

Learning Multi-modal Rewards from Ranking

Timid Driver 
Pattern

Aggressive 
Driver Pattern



Car Example
We have data from one type of driver ⇒ Unimodal

Internal reward 
function

R(ξ)
R(ξ) = ✅

Learning Multi-modal Rewards from Ranking

Timid
OR

Aggressive



Car Example
But what if we had data from multiple different kinds of drivers?

Internal reward 
function

R2(ξ) R1(ξ) = ?
R2(ξ) = ?
R3(ξ) = ?

Learning Multi-modal Rewards from Ranking

Internal reward 
function

R1(ξ)

Internal reward 
function

R3(ξ)

And we don’t know which type of driver corresponds to what data



Standard learning from comparison techniques

Learning Multi-modal Rewards from Ranking

Timid Driver 
Pattern

Aggressive 
Driver Pattern

The car would have an 
accident trying to find a 
policy close enough to 

both the drivers



Example Two: Shelf Task

ξ3

Which trajectory would you prefer?

All your reasonings may be different based 
on what is in each of these shelves!

  ξ1 > ξ3 > ξ2

✅󰷺

  ξ2 > ξ3 > ξ1

Learning Multi-modal Rewards from Ranking



… but why can’t we just label the groups and learn separate reward functions

We see why multimodality is important

Example: separate the timid driver’s data from the aggressive driver’s data

First of all, extremely inefficient to have to separate the data based on reward models

Secondly, it’s not accurate to just separate data based on drivers because a driver who is 
more timid can be aggressive when they are in a hurry

Learning Multi-modal Rewards from Ranking



Why can’t we just do pairwise comparisons (condt.)

Learning Multi-modal Rewards from Ranking

We model the user’s comparison with the softmax 
model

20% of the data vs 80% of the data



Let’s come up with another set of users

Learning Multi-modal Rewards from Ranking

Probability:    0.27        0.73

We know that these two groups of users are different, but to the robot, they are 
indistinguishable and we would not be able to identify the true reward… this is the problem.



Reward Learning in Robotics (Ng and Russell) → Learning from demonstration

Related Work + Limitations

Limitation → Difficult to provide expert demos in robotics

So this paper was the first (and currently one of the only) papers 
tackling multimodality in reward functions!

Preference Based Learning → Bradley Terry, Multinomial logits (MNL), Plackett-Luce, Mallows

Limitation → All works published based on these models focus on unimodal cases

Mixture Models → Mix of MNLs, Plackett-Luce, Mallows
Limitation → Assume latent state dynamic that transition between modes or 
learn the different modes from labelled data



Setup → consider a fully observable deterministic dynamical system

Problem Formulation

A trajectory ξ is a series of states and actions ξ = (s0, a0, . . . , sT , aT )

ξ = (s0, a0, . . . , sT , aT )

Assume there is a set of M reward functions and we refer to each reward function as an expert

Common Linearity Assumption in reward learning
Each preference modeled as linear reward function over a known fixed feature space Φ

Rm(ξ) = ω⊤
mΦ(ξ)   ⇒ with respect to the mth expert

There exists an unknown distribution over the reward parameters
represent this distribution with mixing coefficients 𝛼m such that ∑ M

m=1 𝛼m = 1

Learn reward functions and mixing coefficients using Ranking Queries!



Ranking Model ⇒ using robot example

Problem Formulation

Users asked to rank all these trajectories and the robot will be given back a 
set of trajectory rankings (coming from M humans) ⇒ and we want to learn 
the reward functions



Problem Formulation

Let’s say the first user responds to the query:
We have our probability distribution generated with the softmax rule

The response to ranking query x = (ξa1 , . . . , ξaK ) where a1 is the index of the expert’s top choice, …



Problem Formulation

User noisily chooses best option: 
Randomly sample distribution to pick top choice

ξ1



Problem Formulation

User noisily chooses second best option: 
Randomly sample distribution to pick top choice from remaining

ξ1  ⊱  ξ3 



Problem Formulation

User noisily chooses third best option: 
Randomly sample distribution to pick top choice from remaining

ξ1  ⊱  ξ3  ⊱ ξ4



Problem Formulation

User chooses last option: 

ξ1  ⊱  ξ3  ⊱ ξ4  ⊱  ξ2

This is called the Plackett-Luce Ranking Model!



So given knowledge of the true reward function weights 
ωm and mixing coefficients αm, we have the following 
joint mass over observations x from a query Q:

Learning Multi-modal Rewards from Ranking



Goal is to present user with best set 
of queries that learn reward weights, 
ω, and mixing coefficient, α, based 
upon user rankings of preferred 
query responses 

Objective

Learning Multi-modal Rewards from Ranking



Learning Parameters with Bayesian Learning 

Define: Θ = α, ω 

Assumptions: 

1. Ranked queries conditionally independent given parameters 
2. Queries at timestamp t conditionally independent on the parameters given 

previous queries & rankings. 



Computing Posterior Final Details

1. Prior Distribution: weights have standard gaussian distribution and mixing 
coefficients have uniform prior 

2. Use maximum likelihood estimation to compute the parameters with the 
posterior from before. 

Learning Multi-modal Rewards from Ranking



Types of Queries Presented Matter

- The posterior implies nature of the queries influences the kind of responses 
you get. 

- The more informative the queries, the faster you'll learn or reduce uncertainty about Θ. 
- Robotic queries are generally very costly 

Need to find a way to minimize the number of 
queries! 

Learning Multi-modal Rewards from Ranking



Solution: Active Querying to Maximize Information Gain 

- Greedily select the the most informative query at each timestep. 
- That is, given previous ranked queries, at timestep t the query selected is 

 
D = Past Observations 
I = Mutual Information Function

This is equivalent to, 



Practical Details

- How to sample from multimodal distribution? 

        Use Metropolis-Hastings with multiple chains.

- How to minimize? 

Since the trajectory space is continuous, we need to use simulated annealing. 

Learning Multi-modal Rewards from Ranking



Benchmarks & Environments 

Benchmarks

- Random Query: At each step, the robot selects K random trajectories to 
present to the user 

- Common baseline in this field. 
- Volume Removal: Seeks to maximize difference between prior and 

unnormalized posterior distribution. 

Environments

- LunarLander: Set of 1000 trajectories in OpenAI’s LunarLander environment 
- Banana Placing: 351 trajectories of robot putting banana into shelf 



Comparison to Unimodal Rewards 

Learning Multi-modal Rewards from Ranking



Data Efficiency of Information Gain Approach 



Learning Performance of Information Gain Approach 

Learning Multi-modal Rewards from Ranking



Results on User Studies 

Learning Multi-modal Rewards from Ranking
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