
Meta reward learning;
Multimodal rewards

Yibo Zhang, Max Sobol Mark, Laya Iyer, Shreyas Kar

Overview of Papers

Few Shot Preference
Learning (Meta Learning)

Yibo Zhang

01. Watch, Try, Learn
(Meta Learning)
Max Sobol Mark

02.

Learning Multi-Modal
Rewards from Rankings

Laya Iyer and Shreyas Kar

03.

Introduction to Meta Learning

Let’s Begin with an Example of “Classical” Learning

Task (1)

Given a Spanish dataset, learn a model to speak Spanish.

Hola!

Not Ideal!
Slow and require too

many data!

Another Example of “Classical” Learning

Task (2)

Given a Japanese dataset, learn a model to speak Japanese.

こんにちは !

Not Ideal!
Slow and require too

many data!

More…Examples of “Classical” Learning

Task (N)

Given a Alien language dataset, learn a model to speak Alien language.

✹❞▷▟▞◥◉◁◫ !

Can it learn to
learn?

Meta Learning: Learning to Learn

Meta Task

Given N language datasets, learn a new language more quickly/proficiently.

Hola!
こんにちは !
你好！
Hello!

✹❞▷▟▞ !

Learning (from past tasks)
to learn (a new task).

A Formalism of “Classical” Learning

- A training dataset 𝐷 ; a test dataset 𝑆.
- parameterized model 𝜃; training loss 𝐿(𝜃, 𝐷); test loss 𝐿(𝜃, 𝑆).
- The process of “Classical” Machine Learning:

- Denote the learning procedure as 𝒜:

- The test result:

Classically: a predefined learning procedure 𝒜.
Meta learning: learning 𝒜!

A Formalism of Meta Learning

- A set of training datasets ; a set of test dataset .
- Parameterized model 𝜃; training loss 𝐿(𝜃, 𝐷); test loss 𝐿(𝜃, 𝑆).
- A family of learning algorithm 𝒜 parameterized by ω, given a dataset :

Meta learning:

What could 𝒜 be?

MAML: One of the Most Popular Meta Learning Method

- Recall our meta learning formalism:

- Let meta-parameter ω and model parameter 𝜃 be from the same space.

- Model-Agnosic Meta-Learning (MAML): let the learning algorithm be one step
of gradient update (fine-tuning) with step size 𝛼, i.e.,

- Interpretation: the meta-parameter ω is the initialization of fine-tuning.

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 2017

One Sentence Summary of Meta Learning

Given data from N tasks,
solve a new task more quickly/proficiently.

What if the task is…
Preference Learning?

Overview of Papers

Few Shot Preference
Learning
Yibo Zhang

01. Watch, Try, Learn
Max Sobol Mark

02.

Learning Multi-Modal
Rewards from Rankings

Laya Iyer and Shreyas Kar

03.

Few-Shot Preference Learning for
Human-in-the-Loop RL

Joey Hejna Dorsa Sadign

Stanford University

Motivation of Few-shot Preference Learning

- Problem: learning reward function for a RL robot require expensive
preference queries from human.

- Solution: meta-learning solve a new task with few number of human queries if
given a dataset of tasks for pre-training.

Meta-learning with prior tasks

Few-shot adaptation

Few-Shot Preference Learning

Problem Setup

- Given a state 𝑠, an action 𝑎, the reward function 𝑟(𝑠, 𝑎) is unknown.
- Each task has its own reward function and transition probabilities.
- The reward model is parameterized by 𝜓.
- A reward model 𝜓 determines a RL policy 𝜙.
- Consider preferences over trajectory segments:

- A dataset 𝐷 consists of labeled queries where 𝓎 is the label.
- A loss function captures how well the reward model 𝜓 characterizes

the preferences in dataset 𝐷.

Few-Shot Preference Learning

Problem Setup (Define the Loss Function)

- A dataset 𝐷 consists of labeled queries where 𝓎 is the label.
- A segment of trajectory:
-
- The loss function is binary cross entropy (CE):

where

Few-Shot Preference Learning

Method Component 1: Pre-training with Meta Learning

- Given datasets of labeled preferences queries for N Pretraining tasks;
- Train a reward model 𝜓 using MAML!

- Note: data for prior tasks can come from offline datasets, simulated
policies, or actual humans.

Few-Shot Preference Learning

Method Component 2: Few-shot Adaptation

- Given a pre-trained reward model 𝜓
- For time step

- Find pairs of trajectories with preference uncertainty based on 𝜓.
- Query human preference 𝓎 and forms a new dataset
- Update the reward model:

- Update the policy with the new reward model 𝜓’.

Few-Shot Preference Learning

Method: Overview

-

Experimental Results

-

Conclusion and Discussions

- Conclusion: meta learning reward models reduce the number of queries of
human preferences.

- Discussions:
- Many queries ask human to compare almost identical trajectories.
- Despite the improved query complexity, it still needs an impractical

amount of queries.
- If the new task is too out-of-distribution, training from scratch is better.

Few-Shot Preference Learning

Overview of Papers

Few Shot Preference
Learning
Yibo Zhang

01. Watch, Try, Learn
Max Sobol Mark

02.

Learning Multi-Modal
Rewards from Rankings

Laya Iyer and Shreyas Kar

03.

Watch, Try, Learn
Meta-Learning from Demonstrations and Rewards
Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai,

Mrinal Kalakrishnan, Sergey Levine, Chelsea Finn

Motivation - What is the bottleneck for
robotics progress?

- Key insight of the paper to
bypass the bottleneck.

Watch, Try, Learn

Data is a key bottleneck

- LLMs have internet-scale datasets to train from, but there isn’t (yet) an
equivalent for robotics.

- Data collection is expensive
- Robots are expensive, so people don’t have access to them.
- Human time is expensive, so it’s hard to collect a lot of demonstrations.

- Largest dataset today: Open X-Embodiment

Watch, Try, Learn

Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example: what task is this:

Watch, Try, Learn

Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example:

I’m going to show you a demonstration

Watch, Try, Learn

Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example:

We are now presented with this situation:

Watch, Try, Learn

Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example:

We try, and get feedback

Watch, Try, Learn

Insight: binary user feedback is easy to give!

- Getting sparse reward feedback is much cheaper than hiring robot operators.
- Learn new tasks by:

- Getting only 1 demonstration.
- Having the robot try to solve the task 1+ times.
- Learning from binary success annotations for each trial.

Example: learn from demo and trial

Watch, Try, Learn

Summary of contributions

- Meta-learning algorithm for incorporating demos and binary feedback to solve
new tasks.

- Especially applicable for robotics, where we can have many robots try things
in parallel.

Watch, Try, Learn

Preliminaries - Meta-Learning Primer
- Tasks as MDPs

Watch, Try, Learn

Meta-Learning: Learning to learn new tasks.

- Single-task paradigm:
- Given a dataset {(x, y)k}, learn function fθ(x) → y.

- Meta-learning paradigm:
- Given a task distribution P(T),
- And data for n tasks coming from distributions {pi(x), pi(y | x)}i

n,
- Learn function f’(new task) -> (f(x) → y)

Watch, Try, Learn

Task as MDPs
- Define task Ti as finite-horizon MDP {S, A, ri, Pi}

- S, A are shared between tasks, reward function r and dynamics P are not.
- S is the space of RGB images.
- A is the space of end-effector positions, rotations, openings.
- Assume r is sparse (ri(s) = 1 if task i is completed at s).
- Pi is the (unknown) dynamics function Pi(st+1 | st, at)

- In the real world, there is only one dynamics function.
- This paper considers simulations, where there’s different objects per task.

- Tasks come from (unknown) distribution p(T).

Watch, Try, Learn

Problem statement

We ultimately want to obtain an
agent that can

1) WATCH

2) TRY

3) LEARN

Watch, Try, Learn

Problem Statement: Watch, Try, Learn

- We give the agent K demonstrations of the target task
- K demonstrations {(s0, a0), …, (sH, aH)}i that succeed at target task.

- These demonstrations alone might not be sufficient for full task specification.

- Output of this phase: a policy capable of gathering information about a task

given demonstrations.

��

Watch, Try, Learn

Problem Statement: Watch, Try, Learn

- Agent attempts the task for L trials.

- Humans provide one binary reward for each trial.

- Output of this phase: L trajectories and corresponding feedback that hopefully

disambiguate the task.

��Watch, Try, Learn

Problem Statement: Watch, Try, Learn

- Agent learns from both demonstrations and trials

- Output of this phase: policy capable of solving the target task.

��🏼 🎓

Watch, Try, Learn

Problem Statement: What are we given?

- To train agents that can watch, try, and learn, we are given a dataset of expert

demonstrations containing multiple demos per task.

Watch, Try, Learn

Method
- How do we train an agent from

the expert demonstrations
- How do we train an agent from

trials, human feedback, and
demos

Watch, Try, Learn

- Sample task Ti with expert demonstrations {di,k}
- Train with meta-imitation learning:

- Sample another demonstration of the same task
- Regress to the actions taken on

Concrete example:

Demo1 Demo2 Demo3 Demo4

Method: Training to Watch

Watch, Try, Learn

- Sample task Ti with expert demonstrations {di,k}
- Train with meta-imitation learning:

- Sample another demonstration of the same task
- Regress to the actions taken on

Concrete example:

Demo1 Demo2 Demo3 Demo4

If the agent watches Demo1 and Demo2, it should act like Demo3 and Demo4

Method: Training to Watch

Watch, Try, Learn

- Sample task Ti with expert demonstrations {di,k}
- Train with meta-imitation learning:

- Sample another demonstration of the same task
- Regress to the actions taken on

Concrete example:

Demo1 Demo2 Demo3 Demo4

If the agent watches Demo1 and Demo2, it should act like Demo3 and Demo4

Method: Training to Watch

Sample demos Sample optimal
trajectory from the
same task

For each timestep
in the optimal
trajectory

Maximize the likelihood of
optimal actions given the
demos.

Watch, Try, Learn

Method: How do we condition the policy on demos?

- Encode 40 ordered frames from the demos

- Concatenate with current observation features

Watch, Try, Learn

Method: What does the agent Try?

- When given demonstrations {di,k}, deploy to collect L trials.

- This is equivalent to exploring with Thompson sampling.

- Human labels each trial as success/failure.

Discussion Questions:

Watch, Try, Learn

- Want to train to act optimally.
- We can use the same strategy as before, but conditioning also on the trials!

Method: Training to Learn from the trials

Watch, Try, Learn

Experiments - Gripper environment setup
- Baselines
- Results

Watch, Try, Learn

- Each task has two objects sampled from hundreds.
- Tasks are generally ambiguous given just 1 demo.

Gripper environments

Watch, Try, Learn

- Behavior Cloning: simply train with maximum log-likelihood on all tasks.

- Meta-imitation learning: Run the policy after the Watch step, with no trials.

- Behavior Cloning + SAC: BC pre-training followed by Reinforcement

Learning with the task-specific data.

Baselines

Watch, Try, Learn

Results

Watch, Try, Learn

Discussion question

- Task distribution considered is pretty narrow - do you think this algo could
learn entirely new tasks?

- Relevant posterior work: Decision-Pretrained Transformer.

- The L trials are independent, i.e. the policy has no idea what happened in
other trials.

- What is one key advantage of this?
- What is one key disadvantage?

Watch, Try, Learn

Overview of Papers

Few Shot Preference
Learning
Yibo Zhang

01. Watch, Try, Learn
Max Sobol Mark

02.

Learning Multi-Modal
Rewards from Rankings

Laya Iyer and Shreyas Kar

03.

Learning Multi-modal Rewards from Ranking
Vivek Myers, Erdem Bıyık, Nima Anari, Dorsa Sadigh

Intro to Reward Learning Problem
We want the a robot to perform a specific task

Internal reward
function

R(ξ)
R(ξ) = ?

Learning Multi-modal Rewards from Ranking

Learning Multi-modal Rewards from Ranking

Learning based on Comparison
The robot can show different trajectories to the user

User indicates preferences → Robot learns reward function

ξA or ξB

Pairwise Comparison

ξA ξB

Learning Multi-modal Rewards from Ranking

Pairwise Comparison

Learning a
Reward

Function from
Human Data

Expert Demonstrations

Suboptimal
Demonstrations

Physical Corrections

ALL UNDER THE ASSUMPTION THAT THE MODEL IS UNIMODAL … BUT WHAT DOES THAT MEAN ???

Ranking

Trajectory
Assessments

Example One: Autonomous Vehicle Simulation

Learning Multi-modal Rewards from Ranking

Timid Driver
Pattern

Aggressive
Driver Pattern

Car Example
We have data from one type of driver ⇒ Unimodal

Internal reward
function

R(ξ)
R(ξ) = ✅

Learning Multi-modal Rewards from Ranking

Timid
OR

Aggressive

Car Example
But what if we had data from multiple different kinds of drivers?

Internal reward
function

R2(ξ) R1(ξ) = ?
R2(ξ) = ?
R3(ξ) = ?

Learning Multi-modal Rewards from Ranking

Internal reward
function

R1(ξ)

Internal reward
function

R3(ξ)

And we don’t know which type of driver corresponds to what data

Standard learning from comparison techniques

Learning Multi-modal Rewards from Ranking

Timid Driver
Pattern

Aggressive
Driver Pattern

The car would have an
accident trying to find a
policy close enough to

both the drivers

Example Two: Shelf Task

ξ3

Which trajectory would you prefer?

All your reasonings may be different based
on what is in each of these shelves!

 ξ1 > ξ3 > ξ2

✅󰷺

 ξ2 > ξ3 > ξ1

Learning Multi-modal Rewards from Ranking

… but why can’t we just label the groups and learn separate reward functions

We see why multimodality is important

Example: separate the timid driver’s data from the aggressive driver’s data

First of all, extremely inefficient to have to separate the data based on reward models

Secondly, it’s not accurate to just separate data based on drivers because a driver who is
more timid can be aggressive when they are in a hurry

Learning Multi-modal Rewards from Ranking

Why can’t we just do pairwise comparisons (condt.)

Learning Multi-modal Rewards from Ranking

We model the user’s comparison with the softmax
model

20% of the data vs 80% of the data

Let’s come up with another set of users

Learning Multi-modal Rewards from Ranking

Probability: 0.27 0.73

We know that these two groups of users are different, but to the robot, they are
indistinguishable and we would not be able to identify the true reward… this is the problem.

Reward Learning in Robotics (Ng and Russell) → Learning from demonstration

Related Work + Limitations

Limitation → Difficult to provide expert demos in robotics

So this paper was the first (and currently one of the only) papers
tackling multimodality in reward functions!

Preference Based Learning → Bradley Terry, Multinomial logits (MNL), Plackett-Luce, Mallows

Limitation → All works published based on these models focus on unimodal cases

Mixture Models → Mix of MNLs, Plackett-Luce, Mallows
Limitation → Assume latent state dynamic that transition between modes or
learn the different modes from labelled data

Setup → consider a fully observable deterministic dynamical system

Problem Formulation

A trajectory ξ is a series of states and actions ξ = (s0, a0, . . . , sT , aT)

ξ = (s0, a0, . . . , sT , aT)

Assume there is a set of M reward functions and we refer to each reward function as an expert

Common Linearity Assumption in reward learning
Each preference modeled as linear reward function over a known fixed feature space Φ

Rm(ξ) = ω⊤
mΦ(ξ) ⇒ with respect to the mth expert

There exists an unknown distribution over the reward parameters
represent this distribution with mixing coefficients 𝛼m such that ∑ M

m=1 𝛼m = 1

Learn reward functions and mixing coefficients using Ranking Queries!

Ranking Model ⇒ using robot example

Problem Formulation

Users asked to rank all these trajectories and the robot will be given back a
set of trajectory rankings (coming from M humans) ⇒ and we want to learn
the reward functions

Problem Formulation

Let’s say the first user responds to the query:
We have our probability distribution generated with the softmax rule

The response to ranking query x = (ξa1 , . . . , ξaK) where a1 is the index of the expert’s top choice, …

Problem Formulation

User noisily chooses best option:
Randomly sample distribution to pick top choice

ξ1

Problem Formulation

User noisily chooses second best option:
Randomly sample distribution to pick top choice from remaining

ξ1 ⊱ ξ3

Problem Formulation

User noisily chooses third best option:
Randomly sample distribution to pick top choice from remaining

ξ1 ⊱ ξ3 ⊱ ξ4

Problem Formulation

User chooses last option:

ξ1 ⊱ ξ3 ⊱ ξ4 ⊱ ξ2

This is called the Plackett-Luce Ranking Model!

So given knowledge of the true reward function weights
ωm and mixing coefficients αm, we have the following
joint mass over observations x from a query Q:

Learning Multi-modal Rewards from Ranking

Goal is to present user with best set
of queries that learn reward weights,
ω, and mixing coefficient, α, based
upon user rankings of preferred
query responses

Objective

Learning Multi-modal Rewards from Ranking

Learning Parameters with Bayesian Learning

Define: Θ = α, ω

Assumptions:

1. Ranked queries conditionally independent given parameters
2. Queries at timestamp t conditionally independent on the parameters given

previous queries & rankings.

Computing Posterior Final Details

1. Prior Distribution: weights have standard gaussian distribution and mixing
coefficients have uniform prior

2. Use maximum likelihood estimation to compute the parameters with the
posterior from before.

Learning Multi-modal Rewards from Ranking

Types of Queries Presented Matter

- The posterior implies nature of the queries influences the kind of responses
you get.

- The more informative the queries, the faster you'll learn or reduce uncertainty about Θ.
- Robotic queries are generally very costly

Need to find a way to minimize the number of
queries!

Learning Multi-modal Rewards from Ranking

Solution: Active Querying to Maximize Information Gain

- Greedily select the the most informative query at each timestep.
- That is, given previous ranked queries, at timestep t the query selected is

D = Past Observations
I = Mutual Information Function

This is equivalent to,

Practical Details

- How to sample from multimodal distribution?

 Use Metropolis-Hastings with multiple chains.

- How to minimize?

Since the trajectory space is continuous, we need to use simulated annealing.

Learning Multi-modal Rewards from Ranking

Benchmarks & Environments

Benchmarks

- Random Query: At each step, the robot selects K random trajectories to
present to the user

- Common baseline in this field.
- Volume Removal: Seeks to maximize difference between prior and

unnormalized posterior distribution.

Environments

- LunarLander: Set of 1000 trajectories in OpenAI’s LunarLander environment
- Banana Placing: 351 trajectories of robot putting banana into shelf

Comparison to Unimodal Rewards

Learning Multi-modal Rewards from Ranking

Data Efficiency of Information Gain Approach

Learning Performance of Information Gain Approach

Learning Multi-modal Rewards from Ranking

Results on User Studies

Learning Multi-modal Rewards from Ranking

Works Cited

1. Hejna, Sadigh. Few-Shot Preference Learning for
Human-in-the-Loop RL. CoRL, 2023.

2. Zhou, Jang, Kappler, Herzog, Khansari, Wohlhart, Bai, Kalakrishnan,
Levine, Finn. Watch, Try, Learn: Meta-Learning from
Demonstrations and Reward. Arxiv, 2019.

3. Myers, Bıyık, Anari, Sadigh. Learning Multimodal Rewards from
Rankings. Arxiv, 2021.

https://openreview.net/forum?id=IKC5TfXLuW0
https://openreview.net/forum?id=IKC5TfXLuW0
https://arxiv.org/abs/1906.03352
https://arxiv.org/abs/1906.03352
https://arxiv.org/abs/2109.12750
https://arxiv.org/abs/2109.12750

