
Because Digital’s Alpha architecture
provides the world’s fastest proces-
sors, many applications, especially

those requiring high processor performance,
have been ported to it. However, many other
applications are available only under the x86
architecture. We designed Digital FX!32 to
make the complete set of applications, both
native and x86, available to Alpha. The goal
for the software is to provide fast and trans-
parent execution of x86 Win32 applications
on Alpha systems. FX!32 achieves its goal by
transparently running those applications at
speeds comparable to high-performance x86
platforms. Digital FX!32 is a software utility
that enables x86 Win32 applications to be run
on Windows NT/Alpha platforms. Once
FX!32 has been installed, almost all x86 appli-
cations can be run on Alpha without special
commands and with excellent performance.

Before the introduction of this software,
two common techniques for running an
application on a different architecture than
the one for which it was originally compiled
were emulation and binary translation. Each
technique has an advantage, but also a
drawback. Emulation is transparent and
robust, but delivers only modest perfor-
mance. Binary translation1 is fast, but not
transparent. For the first time, Digital FX!32
combines these technologies to provide
both fast and transparent execution. 

This software consists of three interoper-
ating components. There is a runtime envi-
ronment providing transparent execution, a
binary translator (the background optimiz-
er) providing high performance, and a serv-
er coordinating them. Although FX!32 is
transparent and does not require user inter-
vention, it includes a graphical interface for
monitoring status and managing system
resources.

The first time an x86 application runs, all of
the application is emulated. Together with

transparently running the application, the
emulator generates an execution profile
describing the application’s execution histo-
ry. The profile shows which parts of the appli-
cation are heavily used (for each user) and
which parts are unimportant or rarely used.
While the first run may be slow, it “primes the
pump” for additional processing. Later, after
the application exits, the profile data directs
the background optimizer to generate native
Alpha code to replace all the frequently exe-
cuted procedures. The next time the applica-
tion runs, native Alpha code is used and the
application executes much faster. This process
repeats whenever a sufficiently enlarged pro-
file shows that it is warranted. 

Three significant innovations of Digital
FX!32 include transparent operation, inter-
face to native APIs, and, most importantly,
profile-directed binary translation.

Transparent operation
When we say FX!32 is transparent, we

mean two things: applications execute in the
expected way (without any special com-
mands), and interoperability with native
applications works normally.

Launching x86 applications. Transpar-
ent launching of Win32 x86 applications
comes from a dynamically linked library
(DLL), the transparency agent. Launching an
application on Windows NT always results
in a call to the CreateProcess function. By
intercepting calls to CreateProcess, the trans-
parency agent can examine every image as
it is about to be executed. If a call to Cre-
ateProcess specifies an x86 image, the trans-
parency agent instead invokes the FX!32
runtime to execute the image. Although spe-
cial privileges are required to install FX!32,
once installed, the transparency agent, and
therefore the applications themselves, run
without special privileges. 

Digital FX!32 inserts the transparency
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agent into the address space of each process. A process con-
taining the transparency agent is said to be enabled. Once a
process is enabled, any attempt to execute a Win32 x86
image causes the runtime to start executing the process. The
agent propagates through the system because each attempt
to create a process to run an Alpha image results in that cre-
ated process being enabled. By the time a user is logged on,
all top-level processes have been enabled by Digital FX!32,
and any attempt to execute a Win32 x86 application invokes
FX!32’s runtime. 

Processes are enabled by injecting a copy of the trans-
parency agent into the process’s address space, using a tech-
nique described by Richter.2 The transparency agent’s
initialization routine then modifies a number of imported
entry points by changing the addresses in the image import
tables of all loaded modules to point to routines in the agent.

The transparency agent provides a general mechanism to
change the behavior of an API routine called from Alpha
code. We use this in a number of ways. For example, the
behavior of the Win32 API routine LoadLibrary changes so
that FX!32 loads x86 images. This is important because an
attempt to load an x86 image on an NT Alpha system using
the native loader results in an error. As another part of its
function, FX!32 jackets the x86 image’s exports so that they
can be called from native Alpha code (discussed later). Final-
ly, if FX!32’s runtime is not already in memory, the trans-
parency agent loads the runtime when it loads an x86 image.

The transparency agent we developed can be used for
utilities besides Digital FX!32. For example, the transparen-
cy agent supports SPIKE (once known as OM), an Alpha
native link-time optimization tool.3 Users of SPIKE need only
mark an application as interesting and every internally used
library and image will be translated.

Runtime environment. The Windows NT operating sys-
tem invokes the FX!32 runtime via the transparency agent
whenever the user runs an x86 Win32 application. The run-
time provides transparent execution because it contains an
emulator that implements the entire x86 user-mode instruc-
tion set, and because it supports the complete x86 Win32
environment.

When the application first executes, Digital FX!32 has no
knowledge of this application for this user and so runs it
completely in the emulator. (As explained later, application
calls to the x86 Win32 APIs, in fact, call corresponding native
Alpha APIs.) The next execution of the application runs trans-
lated code for greater performance. The emulator remains
present to interpret those x86 instructions that, for whatev-
er reason, cannot be translated.

The rest of the transparency is provided by full support
for the Win32 environment, such as multiple threads, struc-
tured exception handling, and the Microsoft component
object model (COM) architecture across both the Alpha and
x86 architectures. The runtime allows interfaces to all COM
objects to be accessed from either x86 or Alpha code. 

Runtime operation
The performance of Digital FX!32 comes from executing

high-speed, native Alpha code. To secure high performance,
the runtime transparently substitutes native Alpha code in

place of x86 code whenever possible.
The FX!32 runtime is invoked whenever an enabled

process attempts to execute an x86 image. The runtime loads
the image into memory, sets up the runtime environment,
and then starts emulating the image.

The runtime loader duplicates the functionality of the NT
loader. This is necessary since the Alpha NT loader returns
an error indicating that the image is of the wrong architec-
ture if the loader is invoked to load an x86 image. This would
have been much simpler had we been able to modify NT.
Duplicating the functionality of the NT loader requires that
the runtime relocate images not loaded at their preferred
base address, set up shared sections, and process static
thread local storage (TLS) sections.

After the image is loaded, the loader inserts pointers to
the image into various lists used internally by NT. Maintain-
ing those lists allows the native Windows NT code to treat
both x86 and Alpha images identically. Fortunately, those
image lists are in the user’s address space, and no modifica-
tion of NT is required. Unfortunately, the structure of those
lists is not part of the documented Win32 interface and using
them creates a dependency on the version of NT being run.
This is one of a number of places where Digital FX!32 has
dependencies on undocumented NT features, making it
more dependent on a particular version of NT than a typi-
cal layered application would be. On the other hand, it is
remarkable that Digital FX!32 implementation required no
changes to NT.

Next, the image is entered into FX!32’s database. The data-
base provides the name of the translated image to be used
with a given x86 image. The database is accessed by using
an image ID obtained by hashing the image’s header. The ID
uniquely identifies the image by its contents, independent
of the image’s name or location in the file system. Both the
runtime and the server use the image ID to access informa-
tion stored in the database about the image.

If there is a translated image in the database, the runtime
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loads that image along with the original x86 image. Translat-
ed images are normal NT DLLs loaded by the native loader.
A translated image contains the translated Alpha code, togeth-
er with the two additional sections that define the corre-
spondence between x86 code and Alpha code:

• A section containing relocation information for refer-
ences to the x86 image. If the x86 image was not loaded
at its preferred base address, those references must be
relocated.

• A section containing a map between x86 and translat-
ed routine entry points. The runtime processes this map
to update a hash table, indexed by x86 addresses, with
entries pointing to the corresponding translated code. 

Once the images are loaded, the runtime starts emulating
the x86 instructions. When the emulator interprets a CALL
instruction, it looks for the target x86 address in the hash
table. If a corresponding translated address exists, the emu-
lator transfers to the translated code. The emulator also gen-
erates profile data for use by the translator containing the
following information:

• addresses that are targets of CALL instructions,
• source address/target address pairs for indirect jumps,

and
• addresses of instructions that make unaligned references

to memory.

The profile data is collected by inserting values into the
runtime hash table whenever a relevant instruction is emu-
lated. For example, when emulating the CALL instruction,
the emulator records the call’s target. When an image is
unloaded, or when the application exits, the hash table is
processed, and a profile for that image is written. The serv-
er processes this profile, merging it with any previous pro-
files and may invoke the translator.

Cross-architecture interoperability
Win32 applications make calls to routines that are not part

of the application, specifically the Win32 API. Because these
are x86 applications, they make calls by using the x86 call-
ing conventions. NT Alpha provides the same routines, but
with Alpha calling conventions. FX!32 provides a mechanism
to connect the two. 

Transformations are required to manage a call between a
native Alpha routine and a piece of emulated or translated
code. For example, x86 routines pass arguments on the stack
while Alpha routines expect arguments in registers. Small
code fragments called jackets, which manage the transition
between the x86 and Alpha environments and calling con-
ventions, perform these transformations. 

There are two basic kinds of jackets, static and dynamic,
based on how and when they are created. Static jackets are
created from a defined interface known at load time. They
are included as part of Digital FX!32’s runtime. Most static
jackets are simple and are generated automatically from doc-
umentation and header files. Some static jackets are built by
hand because code is required to process the arguments in

a special way. Digital FX!32 provides static jackets for the
Win32 API interface, NT call-back routines, standard object
linking and embedding (OLE) objects, and some selected
plug-in extensions. 

COM objects whose interfaces are not statically available
are dynamically jacketed at runtime. These dynamic jackets
are created by using type information obtained from the OLE
libraries.

Interface to native APIs
Unlike Unix, in Windows NT most system APIs are part of

the operating system. For example, most graphical user inter-
face functions are built into NT system DLLs. We found that
some applications, such as Microsoft Excel, spend almost half
their execution time in these libraries. We knew that it was
very important for Digital FX!32 to call native libraries when-
ever possible to achieve our performance goals. 

When the NT loader loads an image, the loader “snaps” the
image’s imports by using symbolic information in the image
to locate the addresses of the imported routines or data. The
runtime duplicates this process. However, the runtime treats
imports referring to entries in Alpha images specially, by
redirecting them to refer to the correct jacket entry.

Each jacket contains a special illegal x86 instruction that
serves as a signal to the emulator to switch into the Alpha
environment by calling Alpha code at a fixed offset from the
illegal x86 instruction. The basic operation of most jacket
routines is to move arguments from the x86 stack to the
appropriate Alpha registers, as dictated by the Alpha calling
standard. Some jacket routines provide special semantics for
the native routine being called. For example, the jacket for
GetSystemDirectory returns the path to the x86 system direc-
tory rather than to the true system directory, so x86 appli-
cations do not overwrite native Alpha DLLs.

Jacketing the Win32 API. Previous translation utilities (for
various Unix flavors) created by Digital jacketed the operating
system call interface because that was the defined interface
between applications and the operating system. This required
jacketing an interface to about 100 system calls. Windows NT
defines and documents the Win32 API (layered above the sys-
tem call interface) as the interface between applications and the
operating system, and Digital FX!32 jackets the complete Win32
API. Although jacketing the complete Win32 API is a significant
task, it is required to guarantee correctness and provides bet-
ter initial performance because the jacketed routines are native
and do not need translation. As a result, Digital FX!32 provides
static jackets for entries to over 50 native Alpha DLLs, includ-
ing jackets for many undocumented routines. About 12,000
routines are currently jacketed.

Jacketing call-back routines. Many Windows NT rou-
tines are passed the addresses of routines to call back when
an event occurs. If these values were to be passed blindly,
the Windows NT Alpha code would make a call to a loca-
tion containing x86 code and would certainly crash. A jack-
et is statically created for each procedure-pointer argument,
and the address of that jacket is passed to the native Alpha
code. When Alpha code calls back to its argument, the jack-
et enters the FX!32 runtime.

Jacketing COM objects. The most complicated jacketing
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problem is associated with COM. A COM object is represented
by a table of OLE function pointers. These functions often
have arguments that are pointers to functions or structures
containing pointers to functions. Digital FX!32 manages these
objects in a way that can be used from either native Alpha or
x86 code.

Jacketing plug-in extensions. For full interoperability, it
is also desirable to support x86 plug-ins (add-ons or exten-
sions defined by an application vendor) with the corre-
sponding native application, when it is available. Each of
these introduces another interface (requiring jackets) that is
not defined by NT and not available at runtime. Digital FX!32
cannot load such a plug-in unless it is programmed to jack-
et the interfaces. The current version of Digital FX!32 jackets
a few common plug-in interfaces—we are working on ways
to describe arbitrary plug-in interfaces for a future release. 

Runtime and background optimizer
Commercial applications typically consist of numerous

executable files, called images. Some images are unique to
the application, and some are shared across different appli-
cations on the system. Each time the runtime loads an x86
image, the runtime queries the database as to whether trans-
lated code exists for that image to run in place of the slow-
er x86 code. Translated code is high-speed, native Alpha
code, produced by the background optimizer after previ-
ously emulating the image under Digital FX!32.

After loading the translated code, the runtime sets up tables
that correlate addresses between any x86 code and the trans-
lated code. The runtime then initiates the emulator, which
starts executing the application. From careful design and
alignment with the Alpha architecture, the emulator is both
small and efficient. The emulator is small enough to reside
mostly in the high-speed instruction cache, is optimized for
the Alpha processor pipeline, and takes full advantage of the
64-bit Alpha processor registers.

As it emulates untranslated portions of x86 images, the
runtime collects and saves execution profiles for subsequent
use by the background optimizer. The performance of Dig-
ital FX!32 is based on this cooperation between the runtime
and the background optimizer. 

Coordinating the process: the server 
The server manages FX!32’s environment by coordinating

the runtime and the background optimizer. The server acts
according to Digital FX!32 defaults or according to parame-
ters that can be specified by the user. In response to these
parameters, the server manages execution profiles and
invokes the background optimizer.

After an x86 image is unloaded, the server merges any
new profile information with any existing profiles and com-
pares the size of the result with any previous size. A new
profile means that a previously unseen x86 image has been
executed and may require optimization. An enlarged profile
contains new information, indicating that the current opti-
mized image is incomplete. In either case, the server places
the image and the corresponding profile on the work list for
the background optimizer.

This process is repeated each time the image runs. Figure

1 shows the execution flow among FX!32 components. When
the size of the profile stabilizes (typically at two or three iter-
ations), it indicates that virtually all executed routines in the
image are translated. The image and corresponding profile
are no longer placed on the work list for the background
optimizer. Running the image executes high-performance,
native Alpha code, rather than the slower x86 code. The
image runs at its highest performance.

Creating the speed: binary translation
The background optimizer, a third-generation, profile-

directed binary translator, produces high-speed, native Alpha
code from x86 code by using information gathered into pro-
files by the runtime. A binary translator is a program that,
from the original code, produces translated native code that
can be executed directly. The native Alpha code is subse-
quently made available to the runtime and executed the next
time the image is run. It is this coordinated process that adds
high performance to the transparency of execution.

Design goals. The operation and output of the back-
ground optimizer must be as transparent and robust as the
runtime environment. The user never sees the operation of
the background optimizer; it always presents code to the
runtime that runs to correct completion. To ensure trans-
parency, the background optimizer design allows for no
assumptions, no manual initiation, and no user intervention
in any question/answer cycle. 

Coupled with the stringent need for transparent and flaw-
less operation is a requirement for the highest possible
performance.

Realization of the goals. The background optimizer
guarantees transparent and robust operation by cooperating
with the runtime to ensure a faithful representation of the
x86 machine state. A coherent x86 machine state means the
x86 register assignments, call/return boundaries, and the x86
stack all reflect what would be observed on actual x86 hard-
ware at relevant observation points.

Achieving the performance goals required us to exploit
the full range of modern compiler optimization techniques,
which are all predicated on global optimization.

Previous binary translators operated with a poor quality
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approximation of the application’s control flow graph. As a
consequence, they were limited to the basic block, or perhaps
the extended basic block, as the fundamental unit of transla-
tion. (A basic block is a sequence of instructions with a sin-
gle entry point and a single exit point.) All modern optimizing
compilers require global optimization techniques that direct-
ly conflict with such a basic-block unit restriction. Therefore,
removal of this restriction was the fundamental performance
requirement. The background optimizer successfully removes
this restriction by using profiles to organize carefully chosen
groupings of basic blocks into significantly larger units, called
translation units. Conceptually, a translation unit approximates
a “routine” in a more traditional compiler and thus allows the
full exploitation of global optimization techniques. 

Profile-directed binary translators
Digital has used other binary translation techniques in the

past,1 mainly static binary translation. Our development
group has extensive experience with previous binary trans-
lators. We also looked at other solutions, such as hardware
engines and dynamic binary translation. 

In Digital FX!32, we have developed a new approach to
translation. The emulator captures an execution profile, which
the binary translator subsequently uses to translate executed
x86 code into native Alpha code. Since the translator runs in
the background, it can use complex algorithms to improve the
quality of the generated code. To our knowledge, Digital
FX!32 is the first system to exploit this combination of emu-
lation, profile generation, and binary translation. We call our
approach profile-directed to contrast it with static and dynam-
ic approaches.

Because we have the execution profile, our binary trans-
lator was easier to write, runs faster, and produces better
code than any previous static binary translators. Our trans-
lator was easier to write because the complex search algo-
rithms and heuristics used to find the code and the control
flow graph were replaced by much faster and simpler
lookups. Digital FX!32 produces better code because the pro-
files result in more accurate approximations of the control
flow graph, allowing optimizations to be more effective. 

Translator operation
In many ways our binary translator is a traditional high-

performance compiler. However, there is an important dif-
ference. Compilers start from source level and proceed to
lower the semantic level, while binary translators start with

bits and raise the semantic level first to instructions and then
to control flow graphs. The challenge for the translator is to
produce correct and efficient code in this framework. 

Locating code. The search for code begins at all the des-
tinations of call instructions recorded in the profile. As the
code is parsed, the destinations of indirect branches are
resolved by looking in the profile. As a consequence, no
complex and slow iterated data flow is required. The profile-
directed approach needs less code in the translator even
though this approach makes a more accurate determination
of the location of code and control flow edges.

Since the translator builds a good approximation to the con-
trol flow graph, basic blocks can be joined into larger units.
The translator contains a component called the regionizer that
divides the x86 image into routines.4 Routines are units of
translation that approximate real routines in source programs.

The regionizer represents routines as a collection of
regions. Each region is a contiguous range of addresses con-
taining instructions that can be reached from an entry address
of the routine. Routines end at the return statements identi-
fied by the profile. Unlike basic blocks, regions can have
multiple entry points. The smallest collection of regions con-
taining all the instructions reachable from the routine entry
represents the routine. Most routines have a single region.
This representation efficiently describes the division of the
source image into units of translation.

Intermediate representation. The remaining translator
components process the source image one routine at a time.
All control flow is explicitly represented (including all the
direct control flow), as well as indirect control flow record-
ed in the profile information. For every transfer of control
that might have additional unknown destinations (such as
indirect branches), the translator inserts a call to the emula-
tor. Only the routine’s entry points are entered in the x86-to-
Alpha correlation table, ensuring that the emulator cannot
transfer to an arbitrary block in the routine.

The emulator and translator share a canonical represen-
tation of the x86 state. In the translator, all entries into and
out of the routine use explicit intermediate representation
to represent the canonical x86 state. Other than at these
points, the translator is free to use whatever representations
for the x86 state it finds convenient. As a result, the trans-
formations and optimizations do not have to be as conserv-
ative as in the static translators, which have to allow for the
emulator transferring control to almost any basic block. This
allows the translator to perform global transformations and
optimizations on the whole routine.

A more accurate control flow graph, based on the profile,
is vital to our performance. Each time the application exe-
cutes, an indirect branch to a target not previously execut-
ed invokes the emulator. Once in the emulator, translated
code is not resumed until another routine is called or the
routine returns to a translated caller. The runtime then adds
that fact to the profile.

The same intermediate representation has primitives for
both x86 and Alpha operations. The processing of a routine
starts by building a representation of the x86 code. Then,
multiple transformations convert the representation from an
x86 semantic model to an Alpha semantic model. Optimiza-
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tion phases are interspersed with these transformations. At
the end of processing each routine, the final Alpha code is
assembled into the translated image.

Translation and optimization
Our goal was to handle a very large percentage of x86

applications, including those that do not follow the NT call-
ing conventions. We knew that Digital FX!32 would need to
maintain great fidelity. The translator uses a simple code gen-
erator to map x86 instructions into a correct general, but long,
sequence of Alpha instructions. Then the translator uses glob-
al transformations and optimization to improve the code.

The translator uses many traditional compiler techniques.
It includes optimization phases for dead-code elimination,
constant propagation, common subexpression elimination,
register renaming, global register allocation, instruction
scheduling, and numerous peephole optimizations. 

Condition code management. Most x86 instructions
generate condition codes, but only rarely are they consumed.
Initially, the x86 model is represented in the intermediate
representation with condition code information for each
instruction. Global data flow determines the lifetimes of the
x86 condition codes. Explicit Alpha code is then inserted to
compute only those condition codes used.

Register management. The x86 architecture uses distinct
registers to access different bytes of the same underlying reg-
ister. The mapping of these overlaid registers to Alpha reg-
isters uses data flow to minimize the amount of generated
Alpha code. Since the x86 state only has to be canonical at
routine boundaries, the various overlays of an x86 register
within a routine can be maintained in separate Alpha regis-
ters to allow more efficient access. This also allows global
renaming to reduce register dependencies, increasing the
benefits of instruction scheduling.

Stack management. The x86 architecture has few regis-
ters, so x86 code tends to make extensive use of the x86
stack to hold temporary results. The translator analyzes
memory accesses to identify storing and loading from the
x86 stack. The translator assumes that when the x86 stack is
popped, any data stored above the new stack pointer is dead.
The translator uses this information to eliminate those unnec-
essary loads and stores. Any loads and stores that cannot be
proved to be unaliased are not eliminated. After eliminating
loads and stores, the translator coalesces increments and
decrements to the x86 stack pointer to minimize the number
of updates, while preserving the runtime convention that the
stack is never accessed above the stack pointer.

Routine management. We have found x86 routines that
walk up the stack and modify local variables of their callers,
including return addresses. To make these routines work, FX!32
needs to make the x86 application see an identical stack image.
The translation of a CALL instruction saves the x86 return
address on the x86 stack and then calls the translated code for
the routine. After the translated call, the x86 return address is
on the x86 stack, and the native return address that corresponds
to the x86 return address is in an Alpha register. In the usual
case, the routine does not change the return address, and the
translated code can pop the x86 stack and perform a native
return by using the native return address. However, there are

two problems to solve. First, it must be possible to determine
whether the application modified the x86 return address. Sec-
ond, there must be a place to save the native return address.
Both problems are solved using the shadow stack.

The shadow stack resides at the top of the native Alpha
stack and is maintained by the translated code and the emu-
lator. A shadow stack frame holds the x86 and the Alpha
return addresses, along with the x86 stack pointer at the time
of the call. The translated code for a RET instruction uses
these values to determine when it is not legal to make a native
return, at which point the emulator is entered to start emu-
lating from the modified x86 return address. The emulator
consults the shadow stack when emulating RET instructions
to see if translated code can be resumed. In this case, the
emulator uses the Alpha return address in the shadow stack.

The emulator uses the x86 stack pointer saved in the shad-
ow stack to remove shadow-stack frames above the current
value of the x86 stack pointer. Such frames can occur if the
code cuts back the x86 stack to return to an earlier caller (as
is done by the longjmp C library routine). This cleanup
always finishes before the emulator uses the shadow stack,
ensuring the shadow stack does not overflow.

Alternative solutions
As mentioned previously, our primary design goals for

Digital FX!32 were transparency and high performance.
Before arriving at the coordinated combination of emulation,
profile generation, and profile-directed binary translation,
we examined a range of alternative solutions.5-7

Hardware-based solutions. One approach would have
been to design a new chip that supports both the Alpha and
the x86 ISAs. Similar techniques exist in a number of designs.
The most popular variations on this approach use a hybrid
design known as a decoupled microarchitecture. This design
combines a high-performance execution core with a sophis-
ticated x86 instruction decoder. The decoder translates x86
instructions into simpler operations that execute more effi-
ciently. This approach can generate quite good performance
on applications written for the x86. Some examples of
machines that use this approach are the AMD K6, Intel Pen-
tium Pro, and NexGen Nx586. None of these machines
expose the alternative instruction set architecture (ISA) to the
user, and therefore they pay the penalty of being basically
CISC designs (albeit with a RISC core). This limitation could
be overcome with an x86/Alpha chip that exposes both ISAs.
However, we felt that Digital FX!32 could achieve good per-
formance for x86 applications by using a totally software-
based solution, avoiding the complexity of including support
for the x86 ISA in future Alpha chip designs.

Software-based solutions. There are two common soft-
ware alternatives that also allow applications written for one
ISA to execute on a different ISA—emulation and binary
translation.

Emulators. These programs, at runtime, dynamically exe-
cute instructions written in the original ISA. Many systems
have successfully used emulators to run applications on plat-
forms for which they were not targeted.8 The major advantage
of emulators is transparency. The major drawback is poor
performance. For example, our x86 emulator, which we care-
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fully wrote in Alpha assembler, requires an average of 45
Alpha instructions to emulate one x86 instruction (or 30 Alpha
instructions per Pentium Pro micro-operation). While this is
acceptable for infrequent use, it is too slow to meet our goals. 

Emulators are commonly deployed in one of two ways:
within a restricted environment or tightly integrated into the
operating system. In a typical restricted environment, the
user brings up an emulator window, and the emulator exe-
cutes any application launched in that window. Our goal of
transparent execution made us reject restricted environments.

In an integrated system, a modified operating system
loader automatically launches the emulator whenever an
emulated application is started. Windows NT has contained
an emulator to run 16-bit x86 applications since it was first
released on RISC platforms. Since we did not build Windows
NT, we developed a scheme that allows us to launch emu-
lated applications without needing source changes to NT.

Binary translators. These programs start with original code
and produce translated native code that can be executed
directly. The main advantage of binary translation is that the
translated applications run at high speed. For example, after
translation, Digital FX!32 executes an average of 4.4 Alpha
instructions per x86 instruction (2.1 Alpha instructions per
Pentium Pro micro-operation). Since the typical clock speed
of an Alpha (500 to 600 MHz) is twice the clock speed of an
x86 (166 to 233 MHz), it is clear that using a binary transla-
tor could achieve our goal.

Two previous types of binary translation already existed
when we began to design Digital FX!32: dynamic translators
and static translators. 

Dynamic binary translators
Several emulators9 have used dynamic translation, some-

times called just-in-time translation, or JIT, to achieve better
performance. This approach translates small segments of an
application while it is being executed. Systems using dynam-
ic translation trade off the amount of time spent translating and

the resulting benefit of the translation.
Too much time spent on the transla-
tion and related processing makes the
application unresponsive; too little
time makes the performance slow.

Therefore, most of these systems
limit the optimizations they perform
to minimize the translation overhead.
Dynamic translators are usually state-
less, so that each time an application
starts, the translator begins anew. For
each application, the start of each
execution serves as a training set that
is then used to guide the dynamic
translator. For code run only once,
this is an attractive option. Howev-
er, important applications are run
repeatedly, and the initial training is
thus repeated each time. 

Static binary translators
The other existing software alter-

native is static translation. Here, a translator program scans the
entire image and translates everything at once. We have built
several static binary translators in the past, and developers and
sophisticated end users have found them quite useful as a way
to quickly port an application. Static binary translation is par-
ticularly useful when the source code for the application is not
available or is prohibitively complex to recompile, as an inter-
im solution while source code is being ported, or when the
best possible performance is not an issue.

Static binary translator operation. The user manually
invokes the translation tool to convert code from a non-Alpha
ISA to Alpha. This scheme is difficult to use with an appli-
cation that contains many images, because each image
requires the user to manually invoke the tool. It is hard to get
users to run tools that have many steps; users expect appli-
cations to “just work.”

Static translators use a static approach to try to answer the
following questions: what part of an image is code, what
part is data, and what is the control flow graph?

Static translators separate an image into basic blocks using
the following steps:

1. The static translator identifies a set of addresses con-
sidered to be the start of a basic block. It looks for
addresses that meet the following criteria: they’re exter-
nally visible in the text section of an image, the address-
es serve as either an entry point or as the target of a
relocated instruction, and they start a valid sequence of
instructions that ends in a branch.

2. The static translator parses the identified basic blocks,
finds the ending branch, and tries to determine the des-
tination of the branch. Each such destination is consid-
ered the start of another basic block. For some branches,
finding the destination is simple, but for others (such as
indirect branches via a register), interprocedural global
data flow is required. It is possible to identify a sequence
of instructions as a single basic block and later find a

62 IEEE Micro

Digital FX!32

180

160

140

120

100

80

60

40

20

0

P
er

ce
nt

ag
e

P
ag

eM
ak

er

C
or

el
 D

ra
w

Lo
tu

s
Fr

ee
la

nc
e

Lo
tu

s
W

or
d 

P
ro

M
S

 E
xc

el

M
S

P
ow

er
P

oi
nt

M
S

 W
or

d

P
ar

ad
ox

Pentium
Alpha

Figure 2. Relative Performance of a 500-MHz Alpha running Digital FX!32 and a
200-MHz Pentium. 

.



branch into the middle of that sequence. Thus the trans-
lator needs to iterate both the data flow calculations (to
find possible values of registers) and the parsing of
blocks (to find indirect branches).

3. Because the data flow calculation misses many possi-
ble values, the static translator walks over the text sec-
tion and scans for missed basic blocks. It looks for any
sequence of bits not part of a known basic block, but
that could be parsed into a sequence of valid instruc-
tions ending in a branch.

At the end of this process, the static translator has a list of
addresses in the source image that are likely to be the start
of basic blocks, together with some control flow. As this sea
of basic blocks is translated, the list of addresses expands
into a structure called a correlation table. This table lists pairs
that contain source machine addresses and the addresses of
corresponding translated code. 

At runtime, indirect branches are translated into a call to
a library routine. This routine looks up the destination of the
branch in the correlation table. If there is an entry, there is
an available translation of the corresponding basic block and
the library routine branches to the translation. If there is no
entry, the library routine emulates up to the next branch and
tries the lookup again.

Since the emulator can enter translated code at any block
in the list of pairs, optimization is generally limited to single
basic blocks. However, optimizations can be done across
basic blocks, provided that the block is removed from the
correlation table. Of course, any block disconnected from
the control flow graph cannot be globally optimized. 

Analysis of static binary translators. Although we were
willing to use expensive techniques such as repeated full-
image data flow, the static translators missed important con-
trol flow edges and sometimes saw edges that were never
taken. The correlation table could contain entries for address-
es that appeared to be the start of a block but were actually
data. At the same time, the table could be missing entries for
blocks reached by indirect branches.

The performance of static translations tends to depend
upon how well destinations of indirect branches can be
resolved. When we started to build Digital FX!32, we realized
that the style of programming used in many x86 applications
would make resolving these destinations very difficult. Sta-
tic translators also provide no transparent way of executing
an application, requiring a full translation was manually done
before the application could be executed. This led us to con-
sider a profile-directed translator in conjunction with an emu-
lator that generates profiles.

What does not work?
The most obvious way in which Digital FX!32 is not trans-

parent is that x86 applications are installed by using an
add/remove x86 program applet visually and functionally
similar to the NT add/remove program applet. Another non-
transparency is that the first execution of an application is
much slower than the second execution. 

There are some things that the initial version of Digital
FX!32 was not designed to do. Digital FX!32 only executes

application code. It does not execute drivers, so a native dri-
ver is required for any peripheral device installed on an
Alpha system. Digital FX!32 does not provide complete sup-
port for x86 NT services (services from the NT control panel
services applet) because such services are enabled only
when they are started after FX!32’s server. We hope to
remove this restriction in future versions of Digital FX!32. 

Digital FX!32 does not support the NT debug API. Sup-
porting that interface would require the ability to rematerial-
ize the x86 state after every x86 instruction, severely limiting
optimizations that could be performed by the translator. This
limitation is similar to the trade-off in optimizing compilers
where debugging is restricted when optimizations are turned
on. Since Digital FX!32 does not support the debug interface,
applications requiring it do not run under Digital FX!32. Those
applications are mostly x86 development environments, and
it probably makes sense to run them on an x86 anyway.

Performance
Figure 2 shows relative performance on a set of bench-

marks for a 200-MHz Pentium and a 500-MHz Alpha with
similar configurations. A larger number indicates higher per-
formance. For the Alpha, we took the timings at the second
execution of the benchmark using the same input data. For
these benchmarks, the Alpha running Digital FX!32 provides
roughly the same performance as a 200-MHz Pentium. These
benchmarks are the set of applications included in the well-
known PC benchmark, BapCo SysMark 32.

Of course, no small set of benchmarks characterizes the
performance of a system. Even so, when executing translat-
ed x86 applications, we have consistently measured perfor-
mance on a 500-MHz Alpha in the range between a 200-MHz
Pentium and a 200-MHz Pentium Pro. 

SINCE IT WAS FIRST RELEASED two years ago, Digital
FX!32 has been used by thousands of NT/Alpha users, with
over 13,000 copies downloaded from FX!32’s Web site alone.
At least five commercial redistributors of NT/Alpha systems
have made FX!32 available on their own Web sites. FX!32 has
also been factory-installed software on all NT/Alpha worksta-
tions shipped by Digital. Although, it’s become the most wide-
ly used of all profile-directed software tools, development work
remains. Specifically, FX!32’s operation is still not completely
transparent to the user. To install an x86 application on
NT/Alpha, the user must check a box in the add/remove pro-
grams dialog box. Work remains to be done on the background
optimizer so that its operation need not be scheduled, and the
code produced by the optimizer is still not as close in perfor-
mance to native Alpha code as we would like. 
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