CS 343S: Domain Specific Language Design Studio Spring 2024
Clinic 2: Marble Computing DSL

Due: Tuesday, May 7th, 11:59pm (Submit your code and writeup to Gradescope)

Bugs: We make mistakes! If it looks like there might be a mistake in this handout or the starter
code, please ask a clarifying question on Ed.

Modern computers use electricity and tiny transistors to perform computations. But there’s
nothing preventing you from computing with more exotic materials! Figure[[]shows a few computing
devices made out of materials like wood, LEGOs, and marbles.

This clinic will focus on marble computers, particularly the Turing Tumble model popularized by
the Turing Tumble game [4]. You can play with a small-scale, graphical Turing Tumble simulator [6],
and we definitely suggest you do so before starting the project! The ultimate goal of this project
will be to write a DSL to make writing marble computers, especially very large or complicated ones,
much easier than having to drag-and-drop every piece onto the graphical simulator linked earlier.

1 Classic Turing Tumble Explanation

We first briefly describe the pieces to ‘classic’ Turing Tumble. The computer is programmed by
placing pieces on a grid of pegs.

Marble Droppers. In classic Turing Tumble, there are two reservoirs of marbles at the top of
the board (Figure . One reservoir drops blue marbles, the other drops red marbles. There are
also two ‘triggers’ at the bottom of the board; when a marble lands on one of them, a marble is
dropped from the corresponding reservoir. This mechanism can be implemented using a mechanical
system behind the board.

Ramps A ramp moves marbles down one row on the board. There are two types of ramps; one
moves the marble to the bottom left corner, the other moves the marble to the bottom right corner.
Figure [2b| shows three ramps organized in a sequence to move a marble down three rows.

Bits A bit is like a ramp, except it switches direction every time a marble uses it. Figure
shows a bit that will alternate placing the incoming marble on the right or left ramps.

K =
Turing
Machine {

|
i

(a) Wooden Turing Machine [3] (b) LEGO Turing Machine [I] (¢) Turing Tumble [2]

Figure 1: Computing devices made out of wood, LEGOs, and marbles!

.o

(a) Empty board showing reser- (b) Screenshot showing board (c¢) Screenshot showing board
voirs and marble drop triggers. with ramps with a bit

M%“y o, ﬁ*

(d) Screenshot showing board (e) Screenshot showing board (f) Screenshot showing board
with a crossover with an interceptor with gearbits

Figure 2: Turing Tumble Pieces

Crossovers A crossover switches the direction of a marble: marbles coming in from the left are
dropped out to the right, and vice-versa. Figure [2d|shows a crossover that will release red marbles
on its left and blue marbles on its right.

Interceptors An interceptor stops marbles. Figure [2¢l shows an interceptor being used to make
“no-op” machine.

Gears and GearBits A gear connects multiple gearbits that touch it. Connected gearbits move
together: when one switches directions, they all do. Figure [2f] shows multiple gearbits connected
via a gear. If a marble falls on the leftmost or rightmost gearbit, all three gearbits will change
direction. If a marble falls on the top gearbit, it will change directions twice (once for the top
gearbit then once for whichever gearbit the marble falls on after that), so the overall action has no
effect on the state of the gearbits.

2 Python Turing Tumble Simulator

The graphical Turing Tumble simulator is great, but it forces you to drag-and-drop pieces, making
it difficult to design very large computers. We’ve provided you with 1ibmarbles, a small Turing
Tumble simulator written in Python to use instead (though you’re more than welcome to use
your own, or hack your DSL into the Javascript simulator linked above!). Our Python simulator
makes one major change to the traditional Turing Tumble model: you are allowed to place your

Figure 3: Variant of the blue-blue-blue-red machine shown in the graphical simulator

own “marble drop triggers” anywhere on the board, and they are allowed to drop marbles from
anywhere else on the board. This relaxes the restriction that you only have two drop triggers at
the bottom of the board and two reservoirs at the top.

Examples for using the library are given with the code. Let’s look at a relatively small one now:

from libmarbles import *

alternate blue, blue, blue, red, blue, blue, blue, red,

board = Board ()

board.place_cell ((0, 0), Bit (RIGHT))

board.place_cell((1, -1), DropTrigger (Marble((0, 0), LEFT, BLUE)))
board.place_cell((1, +1), Bit (LEFT))

board.place_cell((2, 0), DropTrigger (Marble((0, 0), LEFT, BLUE)))
board.place_cell ((2, +2), DropTrigger (Marble((0, 0), LEFT, RED)))
board.marble = Marble((0, 0), LEFT, BLUE)

board. interactive ()

We first create an instance of the Board class, then we place cells (like bits and droptriggers) at
different locations on the board. Each location is a pair of numbers, the first being the vertical
location on the board (larger numbers mean further down) and the second being the horizontal
location on the board (larger numbers mean more to the right).

Bits are given their starting direction, and droptriggers are told where to drop a marble from
when the marble reaches the trigger. Finally, the board is given an initial marble location and
‘interactive’ mode is launched, which allows the user to step through execution of the computer.

This particular computer will alternate dropping marbles in the color pattern blue, blue, blue,
red, blue, blue, blue, red, In fact, you can think of it as a two-bit counter! A similar machine
in the Turing Tumble simulator is shown in Figure [3} note it is more complicated because there are
only two reservoirs and two drop triggers allowed in the original Turing Tumble.

3 Your DSL

Your task is to design a DSL for the marble computing simulator. Your DSL should allow the
user to concisely express a marble computer that would be difficult to design manually. You are
encouraged to use the 1ibmarbles library provided as a “backend” for your DSL, e.g., your DSL
could produce an instance of the Board class.

We strongly suggest playing with the graphical simulator first before starting on your DSL. We
also suggest using the “circuit view” on the graphical simulator, as that is the most similar to our
Python interface.

Some ideas to consider:

1. If you're primarily interested in computations on things like numbers, e.g., making an adding
circuit, Turing Tumble encourages the use of Bit cells as inputs. So the user could encode
two addends to be added together by encoding them in binary as the initial starting direction
for sequences of Bits. You may want to provide explicit support for this, i.e., allow the user
to specify ‘inputs’ and automatically convert between Python ints and Bit directions.

2. If you want to think about patterns instead of computations, Turing Tumble can also be used
to make super cool patterns! The 3-blue 1-red pattern above is a fun place to start.

3. You might consider a more compiler-oriented design, e.g., allow your user to specify the
behavior of the system in terms of a DFA and then compile it down.

4. In our Python simulator, the system will throw an error if a marble ever lands on an empty
space. You could consider either adding a check to ensure your machine can never cause such
an error, or maybe design your DSL so that it’s not possible to generate such machines.

5. You could look to hardware design languages like Verilog for inspiration.

6. One of the most frustrating things is the need to place individual pegs at specific X/Y
locations on the board. It would be nice to be able to use relative locations, like “place this
piece below-to-the-right of that piece” and have the system then find absolute locations for
them.

We're also new to Turing Tumble, so we’re super curious to see what everyone comes up with!
If you find any cool patterns or marble computations, feel free to post them on Ed. There is also a
forum of Turing Tumble enthusiasts [5] where they post designs; you could look there for inspiration
or other example boards. In addition, here’s a practice guide from their website with problems and
solutions [7].

4 Deliverables

Before writing code, please answer the first three questions in written.md. These aim to make you
develop a plan for your implementation. Answer the Feedback questions in written.md.

Submission

After implementing your DSL, please finish answering the feedback questions in written.md. Then
just zip up your code and written responses and submit them to Gradescope!

References

Building a lego turing machine. https://www.cs.cmu.edu/~soonhok/
building-a-lego-turing-machine.htmll

A computer that runs on marbles. https://www.youtube.com/watch?v=8B0vLL80k8I.
Mechanical turing machine in wood. https://www.youtube.com/watch?v=vo8izCKHiFO.
Turing tumble — build marble computers. https://upperstory.com/turingtumble/.
Turing tumble forums. https://community.turingtumble.com/.

Turing tumble graphical simulator. https://jessecrossen.github.io/ttsim.

Turing tumble practice guide. https://upperstory.com/turingtumble/assets/
practice-guide-2021.pdf|

https://www.cs.cmu.edu/~soonhok/building-a-lego-turing-machine.html
https://www.cs.cmu.edu/~soonhok/building-a-lego-turing-machine.html
https://www.youtube.com/watch?v=8BOvLL8ok8I
https://www.youtube.com/watch?v=vo8izCKHiF0
https://upperstory.com/turingtumble/
https://community.turingtumble.com/
https://jessecrossen.github.io/ttsim
https://upperstory.com/turingtumble/assets/practice-guide-2021.pdf
https://upperstory.com/turingtumble/assets/practice-guide-2021.pdf

	Classic Turing Tumble Explanation
	Python Turing Tumble Simulator
	Your DSL
	Deliverables

