Week 2: Internal DSLs in Python

April 8, 2024

DSL of the day: ggplot2

.
.
. 3
(R
300~ &
i Diet
. : I 1
£ 0 ' !I
2 200- . [] 2
2 . ° 8
i ltia -
H i s 4
100- | (] i 3o
| T
Loy] o o
ll) é 10 1'5 Zb

Time

DSL of the day: ggplot2

.
.
N
.
(R
300- . I' ’
. Diet
: i
= (]] .| 1
£ Q i !l
® 200 . [(] e 2
S . e 8
i ltia -
s . Il . 4
100~ |||g-
| T
! A
0 5 10 15 20

Time

ggplot2, simplified:

data

ggplot(data, aes(x=Time, y=weight)) +
geom_point (aes (color=Diet))

DSL of the day: ggplot2

- Q
.
N
.
38 —
300- - I [
: I Diet
o
o 5 i H ! - o 1 The Grammar
z H :
S 200 E ' ! H ™ . of Graphics
2 ~
i ltia - Nk
s . l M . 4 .
100 I l ' i ! 3o o =t
00 T e
ot ! H =1
ll) é 10 15 20
Time 6 Springer /f‘)

ggplot2, simplified:

data

ggplot(data, aes(x=Time, y=weight)) +
geom_point (aes (color=Diet))

DSL of the

.
.
° 3
300~ H 3
: I Diet
o
o 5 H - o 1 The Grammar
%’200- H {] i .2 of Graphics
2 . []
SERRRIES s
s . M . 4 .
100- l | '] i . RS T
g6]o | §c B
BN RE =1
0 5 10 15 20
Time ‘Springer

: : : df5 = dfmain %%
ggplot2, simplified: Filter(country -
group_by(type) %%
mutate(cases7d = rollmean(cases, 7, na.pad = TRUE))

“singapore”) H%

data
geplot(dfs, aes(date, cases, color = type)) +

‘geom_point(size = 0.5) + geon_line(aes(y = cases7d)) +

R scale_x_date(date_breaks = "1 month", date_labels
scale_color_manual (values=c("darkorange2", " firebrick

‘theme_classic(base_size = 24) +

theme(axis.text.x = element_text(angle = 36, hjust = 1))

fnctin

aesthetics

d-%b") +
dodgerblue2”)) +

ggplot(data, aes(x=Time, y=weight)) +
geom_point (aes (color=Diet))

Internal DSLs live in a host language

Internal DSLs. . .

e are embedded within a host language

o like a library

Internal DSLs live in a host language

Internal DSLs. . .

e are embedded within a host language
o like a library
e have syntax and semantics that are a subset of the host
language's
e ok: sound @ Volume(2)
e not ok: sound <> Volume(2)

Internal DSLs live in a host language

Internal DSLs. . .

e are embedded within a host language
o like a library
e have syntax and semantics that are a subset of the host
language's
e ok: sound @ Volume(2)
e not ok: sound <> Volume(2)
e are generally more accessible

e interoperability through host
e metaprogramming (functions, classes, ...) through host
e familiar syntax

Internal DSLs live in a host language

Internal DSLs. . .

e are embedded within a host language
o like a library
e have syntax and semantics that are a subset of the host
language's
e ok: sound @ Volume(2)
e not ok: sound <> Volume(2)
e are generally more accessible

e interoperability through host
e metaprogramming (functions, classes, ...) through host
e familiar syntax

e rely on the extensibility of the host

Some Python Internal DSLs

0:’0
.

Some Python Internal DSLs

orflc

th tf.Session() a.
tf.constant(15
f.constan

tf.divide(pro

run(res)

Some Python Internal DSLs

tf.Session() as sess:

Some Python Internal DSLs

SymPy

Quickstart

Eager to get started? This page gives a good introductio
Session() as sess: and install Flask first

constant(15 A Minimal Application

constant(5, name
tf.multiply(a d F Ia S k A minimal Flask application looks something like this
f.add(a, :

divide(prod from flask import Flask
! Contents
- app = Flask(_name_)
AMinimal Applicat o
v —— inimal Application route(*/")

Debug Mode def hello world():
HIML Escaping return "<p>Hello, Vorld
Ranting

How can we extend Python
to create internal DSLs?

Custom Operators
Custom Blocks
Custom Definitions

Deferred Execution

Custom Operators

How can this code
(A& B) -C

apply to sets instead of numbers?

Operator Overloading

In Python, operators on user-defined classes dispatch to specific

methods.

The Python data model documents every operator and its
method(s).

The expression a + b is evaluated as a.__add__(b).

(If this is unimplemented, then Python tries b.__radd__(a).)

https://docs.python.org/3/reference/datamodel.html

A laundry list

+ __add__
- __sub__
* mul _

/ __truediv__
// __floordiv_
% __mod

Q@ __matmul__

kk __pow_

+= __iadd__

+ __radd__
+ —_pos__
- __neg__

~ __invert__

& __and__
| __or__
T o__xor__
<< __1shift__

>> __rshift__

if __bool__
() __call__
in __contains__
[1 __getitem__

len __len_

!= __ne__
== __eq__
>= __ge__
> __gt__
<= __le__
< __1t

Live example: multiset

Our goal:

1 >>> a = Multiset (1, 1, 2)
2 >>> b Multiset (1, 4, 5)
3 >>> a + b

4 Multiset (1, 1, 1, 2, 4, 5)
5 >>> a | b

6 Multiset(1, 1, 2, 4, 5)

7 >>> a & b

8 Multiset (1)

9 >>> a - b

10 Multiset (1, 2)

10

Custom Blocks

Some compound statements can be customized

1 if condition:

2 # code

4 for item in collection:

5 # code

6

7 with open("out.txt", "w") as f:
8 # code

10 # others: while, match, try

11

Some compound statements can be customized

1 if condition:

2 # code

4 for item in collection:

5 # code

6

7 with open("out.txt", "w") as f:
8 # code

10 # others: while, match, try

You can customize for by defining __iter__ for collection.

11

Some compound statements can be customized

1 if condition:

2 # code

4 for item in collection:

5 # code

6

7 with open("out.txt", "w") as f:
8 # code

10 # others: while, match, try

You can customize for by defining __iter__ for collection.

You can also customize with. ..

11

With statements

1 with open("out.txt", "w") as f: # opens file
2

3 # code (manipulates file)

4

5 # file is dimplicitly closed

6 # (even with an exception)

7 # post-close code

12

With statements

1 with open("out.txt", "w") as f: # opens file
2

3 # code (manipulates file)

4

5 # file is dimplicitly closed

6 # (even with an exception)

7 # post-close code

This works because open("out.txt", "w") is a context manager.

12

With statements

1 with open("out.txt", "w") as f: # opens file
3 # code (manipulates file)
5 # file is dimplicitly closed

6 # (even with an exception)

7 # post-close code

This works because open("out.txt", "w") is a context manager.
It implements __enter__ and __exit__.

® __enter__(self) -> Any

e return value is bound to f in “as £."

12

With statements

1 with open("out.txt", "w") as f: # opens file
3 # code (manipulates file)

5 # file is dimplicitly closed
6 # (even with an exception)

7 # post-close code

This works because open("out.txt", "w") is a context manager.
It implements __enter__ and __exit__.

® __enter__(self) -> Any
e return value is bound to £ in “as £."
® __exit__(self, exception info) -> bool

e return value: whether to re-raise the exception

12

With statements

contextlib.contextmanager iS @ convenience decorator® for

implementing a context manager.

It converts a one-yield generator into a context manager.

1 @contextlib.contextmanager
> def my_manager ():

3 # set up

4 try:

5 yield f # run block

6 finally:

7 # clean up

We'll define this soon!

13

Live example: terminal color

Our goal:

1 >>> with(Color .RED): print("this is red")

2 this is red

3 >>> print("this is black")

4 this is black

5 >>> with(Color .BLUE): print("this is blue")

6 this is blue

14

Custom Definitions

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

ii5)

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

e — DSLs override similar operators: e=, <<=, ...

ii5)

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

e — DSLs override similar operators: e=, <<=, ...
e An example from Magma (a Python hardware DSL):

class BasicWhen(m.Circuit):
io = m.I0O(I=m.In(m.Bits[2]), S=m.In(m.Bit), O=m.Out(m.Bit))
with m.when(io.S):
io.0 @= io.I[0]
with m.otherwise():
io.0 @= io0.I[1]

ii5)

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

e — DSLs override similar operators: e=, <<=, ...
e An example from Magma (a Python hardware DSL):

class BasicWhen(m.Circuit):
io = m.I0O(I=m.In(m.Bits[2]), S=m.In(m.Bit), O=m.Out(m.Bit))
with m.when(io.S):
io.0 @= io.I[0]
with m.otherwise():
io.0 @= io0.I[1]

But, definitions can be customized.

ii5)

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

e — DSLs override similar operators: e=, <<=, ...
e An example from Magma (a Python hardware DSL):
class Basicwhen(m.Circuit):
io = m.I0(I=m.In(m.Bits[2]), S=m.In(m.Bit), O=m.Out(m.Bit))
with m.when(io.S):
io.0 @= io.I[0]

with m.otherwise():
io.0 @= io0.I[1]

But, definitions can be customized.

e Function definitions: def foo(..):

e Class definitions: class Foo(..):

ii5)

Decorator syntax

The following is an instance of a decorator applied to a function
definition.

1 @my_decorator
2 def foo(..):
3 # code

It is essentially equivalent to the following:

1 def foo(..):
2 # code

3 foo = my_decorator (foo)

16

Decorators are widespread

My favorite stdlib decorator:

1 @dataclasses.dataclass
2 class Var (Expr):

3 name: str

17

https://wiki.python.org/moin/Decorators

Decorators are widespread

My favorite stdlib decorator:

1 @dataclasses.dataclass
2 class Var (Expr):

3 name: str

Other examples:

® staticmethod (method)

® functools.total_ordering (cIass)

® functools.wraps (function)

® contextlib.contextmanager (function)

. full list ..

17

https://wiki.python.org/moin/Decorators

Live example: terminal color

Our goal:
1 @rec_trace
2 def fib(n): return n if n < 2 else return fib(n - 1) +
fib(n - 2)

3 >>> print (£ib(3))
4 call £ib(3)

5 call fib(2)

6 call fib (1)

7 ret 1 = fib(1)
8 call fib (0)

9 ret 0 = f£ib(0)
10 ret 1 = fib(2)
11 call fib (1)

12 ret 1 = fib(1)
13 ret 2 = £fib(3)

14 2

18

Deferred Execution

Python’s extensibility

Python is extensible. You can:

e customize operator semantics
e customize with-block entry/exit events

e wrap definitions

19

Python’s extensibility

Python is extensible. You can:

e customize operator semantics
e customize with-block entry/exit events

e wrap definitions

Python's extensibility has limits.

e Evaluation order is fixed.
e A + B, A always evaluates before B and before +.

Precedence is fixed.

Some operators are not overloadable: =, and, or, not.
Lambdas are verbose and can't contain statements.

® lambda x, y: x + ¥y

Evaluation is eager.

19

Breaking limits through external techniques

We can circumvent Python's limits with an external tool:

e an AST.

20

Breaking limits through external techniques

We can circumvent Python's limits with an external tool:
e an AST.
Two steps:

e Use Python's evaluation semantics to build an AST.

e Later, execute that AST using a custom interpreter.

20

Breaking limits through external techniques

We can circumvent Python's limits with an external tool:
e an AST.
Two steps:

e Use Python's evaluation semantics to build an AST.

e Later, execute that AST using a custom interpreter.
Some remarks:

e True execution is deferred until after Python's execution.
e The interpreter(/...) is often (but not always) in Python.
e This gives semantic flexibility of an external DSL.

e The does not improve syntactic flexibility very much.

20

Live example: auto-differentiation

Our goal:

1 @formula
2 def f(x, y):
3 return x * x + y

4 # derivative in x: 2 * X

6 >>> f(x=2, y=1)

7 B

g >>> f.deriv("x") (x=2, y=1)
9 4

21

Custom operators (overloading)
Custom blocks (context managers)
Custom definitions (decorators)

Deferred execution (ASTs for internal DSLs)

The internal lab will exercise all of these skills.

Next class: design!

22

Bonus question

Is SQL an internal DSL?

C Testjava x | c DBUtilsjava x | (" Mainjava x | (c DBConstantsjava x
final String s4

'select * from ui where id

+ cnt3.toString(g
select * from ui where id

final String s5 + DBConstants.FIi
final String s6 = DBUtils.executeQuerySingle("select PKG_GT_LISTEl _
final String s7 = "select " + UNSPECIFIED_VAR + " from dual”;
final String s& = new StringBuilder(870)

.append("SELECT c.nm chemnm\n")

.append{” ,c.nm_html chemnmhtml\n")

.append("from test") =

.append(“where c.t = "

.append{DBConstants.FILTER_SQL_VAR)

.append("and c.a"}

.append(” = ")

.append{cnt2)

JtoString();

Java2sqL - L
‘4 SELECT c.nm chemnm
sc.nm_html chemnmhtml

from testwhere c.t = 1 /*DBConstants.FILTER_SQL_VAR*/and c.a = 1L [*cnt2*,

0 6:TODO | % Java2sQL Event Log

23

	Custom Operators
	Custom Blocks
	Custom Definitions
	Deferred Execution

