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What is Deep Packet Inspection (DPI)?

e In-network middleboxes use DPI to examine and alter packets

e Used to enforce security policies
o Intrusion Detection/Prevention, Exfiltration Prevention, Parental filtering, etc.
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DPl and HTTPS

e HTTPS and other encryption protocols have dramatically grown in usage
e Packet payloads are encrypted, middleboxes can no longer inspect them

e To enable inspection, some systems support insecure HTTPS
o Man-in-the-middle attack on SSL

Functionality Privacy
of or from
Middleboxes Encryption

Can we get both?



BlindBox: Both Privacy and DPI

e Performs inspection directly on encrypted payload

e Connection Setup:
o sender/receiver bootstrap off SSL handshake
o Middlebox performs own connection setup using obfuscated rule encryption

e Send:

o Encrypts traffic with SSL, tokenizes traffic by splitting into substrings, encrypts tokens
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Figure 1: System architecture. Shaded boxes indicate algorithms added by BlindBox.



BlindBox: Both Privacy and DPI

e Detection

o Middlebox receives both SSL-encrypted traffic and encrypted tokens

o Detect module searches for matches between encrypted rules and encrypted tokens
e Receive

o Receiver decrypts and authenticates traffic using normal SSL
o Receiver also checks that encrypted tokens were encrypted properly by sender
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Threat Model Summary

e C(Clients
o  Want to protect privacy from middlebox AND protection from each other
o Requires: at least one client must be honest

e Middlebox

o Honest but curious
o Can only see what is necessary to enforce security policy
e Rule Generator

o Must be trusted by both middlebox and clients
o Cannot actually observe or alter traffic



Functionality Evaluation

e Can BlindBox implement the functionality required for each target system?

o Protocol I: Exact String Matching
m Parental Filtering + Document watermarking
o Protocol Il: Exact String Matching for Multiple Keywords
m Extends support to IDS policies requiring multiple keywords
o  Protocol lll: Probable Cause Privacy
m  Supports RegEx and scripting, by enabling decryption w/ probable cause

Dataset L. II1. 1.

Document watermarking [45] 100% | 100% | 100%
Parental filtering [13] 100% | 100% | 100%
Snort Community (HTTP) 3% 67% 100%
Snort Emerging Threats (HTTP) | 1.6% 42% 100%
McAfee Stonesoft IDS 5% 40% 100%
Lastline 0% 29.1% | 100%

Table 1: Fraction of attack rules in public and industrial
rule sets addressable with Protocols I, II, and III.



Functionality Evaluation

e Does BlindBox fail to detect any attacks/policy violations that standard

implementations would detect?
o Environment: college “capture the flag” contest for hacking servers
o Compared to Snort, BlindBox detected:

97.1% of attack keywords
99% of the attack rules



Performance Evaluation

How long does it take to encrypt/detect a token?
How long does the initial handshake take with the middlebox?
How does BlindBox compare in detection time against other strawmen

approaches?
Vanilla HTTPS | FE Strawman | Searchable Strawman | BlindBox HTTPS
Encrypt (128 bits) 13ns 70ms 27us 69ns
Client Encrypt (1500 bytes) | 3us 15s 257us 90y
Setup (1 Keyword) 73ms N/A N/A 588 ms
Setup (3K Rules) 73ms N/A N/A 97 s
Detection:
1 Rule, 1 Token NP 170ms 1.9us 20ns
MB 1 Rule, 1 Packet NP 36s 52us Sus
3K Rules, 1 Token NP 8.3 minutes 5.6ms 137ns
3K Rules, 1 Packet NP 5.7 days 157ms 33us

Table 2:

Connection and detection micro-benchmarks comparing Vanilla HTTPS, the functional encryption (FE)

strawman, the searchable strawman, and BlindBox HTTPS. NP stands for not possible. The average rule includes

three keywords.



Performance Evaluation

e How long are page downloads with BlindBox, excluding setup cost?
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Figure 3: Download time for TLS and BlindBox (BB) +

TLS at 20Mbps x 10ms.



Performance Evaluation

e \What is the computational overhead of BlindBox encryption, and how does it
impact page load times?
o Figure 4: Easy to see cost of encryption at a link capacity of 1Gbps
o Can be mitigated with extra cores and parallelization
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Figure 4: Download time time for TLS and BlindBox
(BB) + TLS at 1Gbpsx10ms.



Performance Evaluation

What is the bandwidth
overhead of transmitting
encrypted tokens for a typical
web page?
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Depends on what fraction of bytes

are text/code that must be
tokenized

Penalty is lower for pages
consisting mostly of video/images

since BlindBox doesn’t tokenize
video/images.
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Figure 5: Bandwidth overhead over top-50 web dataset.
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Figure 6: Ratio: transmitted bytes with BlindBox to
transmitted bytes with SSL.



Evaluation Highlights

e Functionality:

o Seems to cover the majority of use cases, esp. with protocol Il
e Detection Time: similar to existing IDS

o 186Mbps with BlindBox (compare to Snort at 85Mbps)
e Transmission Time: reasonable overhead

o Page load completion time increases by 0.15-1x (ignoring setup)
e Setup Time: very slow

o 97 sec for 3000 rules
o This could be OK when connections are persistent



Discussion

e Alternatives to BlindBox?
o Read-only middlebox protocol?

e Limitations of the threat model?
o Can we always find a trusted rule generator?
o  Why must we keep rules hidden from endpoints?
m Is it worth exposing rules to the ends in order to improve performance/reduce
complexity?
o Does decryption when matching a substring give MB too much power?
e Other applications of BlindBox?
o loT auditing? (Judson Wilson’s work)
e How do we feel about their results?

o Do we believe the numbers?
o  Are their metrics relevant measures of “success”?



