BlindBox: Deep Packet Inspection over
Encrypted Traffic

Justine Sherry, Chang Lan, Raluca Ada Popa, Sylvia Ratnasamy

presentation by Luke Hsiao

Outline

Introduction and Motivation
System Overview

Threat Model

Functionality Evaluation
Performance Evaluation
Discussion

What is Deep Packet Inspection (DPI)?

e In-network middleboxes use DPI to examine and alter packets

e Used to enforce security policies
o Intrusion Detection/Prevention, Exfiltration Prevention, Parental filtering, etc.

\
- ‘ —

Middlebox

DPl and HTTPS

e HTTPS and other encryption protocols have dramatically grown in usage
e Packet payloads are encrypted, middleboxes can no longer inspect them

e To enable inspection, some systems support insecure HTTPS
o Man-in-the-middle attack on SSL

Functionality Privacy
of or from
Middleboxes Encryption

Can we get both?

BlindBox: Both Privacy and DPI

e Performs inspection directly on encrypted payload

e Connection Setup:
o sender/receiver bootstrap off SSL handshake
o Middlebox performs own connection setup using obfuscated rule encryption

e Send:

o Encrypts traffic with SSL, tokenizes traffic by splitting into substrings, encrypts tokens

(rule generator)

\
rules -
| | rule preparation |
4 N encrypted rules 4
R . 'encrypt? encrypted tokens > ==
traffic et =
__‘ i . detect = validate
= o Sk traff
SsL }.’ encrypted traffic - »| ssL| IP N
_ sender) _ middlebox) _ receiver

Figure 1: System architecture. Shaded boxes indicate algorithms added by BlindBox.

BlindBox: Both Privacy and DPI

e Detection

o Middlebox receives both SSL-encrypted traffic and encrypted tokens

o Detect module searches for matches between encrypted rules and encrypted tokens
e Receive

o Receiver decrypts and authenticates traffic using normal SSL
o Receiver also checks that encrypted tokens were encrypted properly by sender

(rule generator)

\
rules -
| | rule preparation |
4 N i encrypted rules 4 A
R . 'encrypt? encrypted tokens > ==
traffic et =
__‘ i . detect = validate
= o Sk traff
SsL }.’ encrypted traffic - »| ssL| IP N
_ sender) _ middlebox) _ receiver »

Figure 1: System architecture. Shaded boxes indicate algorithms added by BlindBox.

Threat Model Summary

e C(Clients
o Want to protect privacy from middlebox AND protection from each other
o Requires: at least one client must be honest

e Middlebox

o Honest but curious
o Can only see what is necessary to enforce security policy
e Rule Generator

o Must be trusted by both middlebox and clients
o Cannot actually observe or alter traffic

Functionality Evaluation

e Can BlindBox implement the functionality required for each target system?

o Protocol I: Exact String Matching
m Parental Filtering + Document watermarking
o Protocol Il: Exact String Matching for Multiple Keywords
m Extends support to IDS policies requiring multiple keywords
o Protocol lll: Probable Cause Privacy
m Supports RegEx and scripting, by enabling decryption w/ probable cause

Dataset L. II1. 1.

Document watermarking [45] 100% | 100% | 100%
Parental filtering [13] 100% | 100% | 100%
Snort Community (HTTP) 3% 67% 100%
Snort Emerging Threats (HTTP) | 1.6% 42% 100%
McAfee Stonesoft IDS 5% 40% 100%
Lastline 0% 29.1% | 100%

Table 1: Fraction of attack rules in public and industrial
rule sets addressable with Protocols I, II, and III.

Functionality Evaluation

e Does BlindBox fail to detect any attacks/policy violations that standard

implementations would detect?
o Environment: college “capture the flag” contest for hacking servers
o Compared to Snort, BlindBox detected:

97.1% of attack keywords
99% of the attack rules

Performance Evaluation

How long does it take to encrypt/detect a token?
How long does the initial handshake take with the middlebox?
How does BlindBox compare in detection time against other strawmen

approaches?
Vanilla HTTPS | FE Strawman | Searchable Strawman | BlindBox HTTPS
Encrypt (128 bits) 13ns 70ms 27us 69ns
Client Encrypt (1500 bytes) | 3us 15s 257us 90y
Setup (1 Keyword) 73ms N/A N/A 588 ms
Setup (3K Rules) 73ms N/A N/A 97 s
Detection:
1 Rule, 1 Token NP 170ms 1.9us 20ns
MB 1 Rule, 1 Packet NP 36s 52us Sus
3K Rules, 1 Token NP 8.3 minutes 5.6ms 137ns
3K Rules, 1 Packet NP 5.7 days 157ms 33us

Table 2:

Connection and detection micro-benchmarks comparing Vanilla HTTPS, the functional encryption (FE)

strawman, the searchable strawman, and BlindBox HTTPS. NP stands for not possible. The average rule includes

three keywords.

Performance Evaluation

e How long are page downloads with BlindBox, excluding setup cost?

(@)

Single-core CPU can keep up with link rate

—~ 16

2 14t

g 12t

= 10 |

- 8

B gl N
'J 4
[P

%ﬂ 2
A 0

YouTube AirBnB

Whole Page: BB+TLS s

Whole Page: TLS =T
Text/Code: BB+TLS nm——
Text/Code: TLS -

I N

CNN NYTimes Gutenberg

Figure 3: Download time for TLS and BlindBox (BB) +

TLS at 20Mbps x 10ms.

Performance Evaluation

e \What is the computational overhead of BlindBox encryption, and how does it
impact page load times?
o Figure 4: Easy to see cost of encryption at a link capacity of 1Gbps
o Can be mitigated with extra cores and parallelization

I S —— Whole Page: BB+TLS mmmmm -

: Whole Page: TLS 2223
. N |) Text/Code: BB+TLS mmmmmm |
N | § Text/Code: TLS |

Page Load Time (s)
CS=NWRLONI00O
T

CNN NYTimes YouTube AirBnB Gutenberg

Figure 4: Download time time for TLS and BlindBox
(BB) + TLS at 1Gbpsx10ms.

Performance Evaluation

What is the bandwidth
overhead of transmitting
encrypted tokens for a typical
web page?

(@)

Depends on what fraction of bytes

are text/code that must be
tokenized

Penalty is lower for pages
consisting mostly of video/images

since BlindBox doesn’t tokenize
video/images.

100
80

Blindbox Overhead
(Ratio to Baseline)

Total Bytes (MB)

Images/Binary HE—
Text/Code ——
Window Tokens 1
Window Overhead ——

(a) Window-Based Tokenization
100 I 10

Total Bytes (MB)

Blindbox Overhead
(Ratio to Baseline)

Images/Binary
Text/Code ———1
Delimited Tokens EE—
Delimited Overhead ——

(b) Delimiter-Based Tokenization
Figure 5: Bandwidth overhead over top-50 web dataset.

1 ETTTT L ekl i T
E 0.6 [3 ™
o 0.4 froe Delim Tokenization : Plaintext s |
! Window Tokenization : Plaintext ssssss==
0.2 foy '..' Delim Tokenization : gzip v
i Window Tokenization : gzip

0 5 10 15 20
Tokenization Overhead Ratio

Figure 6: Ratio: transmitted bytes with BlindBox to
transmitted bytes with SSL.

Evaluation Highlights

e Functionality:

o Seems to cover the majority of use cases, esp. with protocol Il
e Detection Time: similar to existing IDS

o 186Mbps with BlindBox (compare to Snort at 85Mbps)
e Transmission Time: reasonable overhead

o Page load completion time increases by 0.15-1x (ignoring setup)
e Setup Time: very slow

o 97 sec for 3000 rules
o This could be OK when connections are persistent

Discussion

e Alternatives to BlindBox?
o Read-only middlebox protocol?

e Limitations of the threat model?
o Can we always find a trusted rule generator?
o Why must we keep rules hidden from endpoints?
m Is it worth exposing rules to the ends in order to improve performance/reduce
complexity?
o Does decryption when matching a substring give MB too much power?
e Other applications of BlindBox?
o loT auditing? (Judson Wilson’s work)
e How do we feel about their results?

o Do we believe the numbers?
o Are their metrics relevant measures of “success”?

