
BlindBox: Deep Packet Inspection over 
Encrypted Traffic

Justine Sherry, Chang Lan, Raluca Ada Popa, Sylvia Ratnasamy

presentation by Luke Hsiao



Outline
● Introduction and Motivation
● System Overview
● Threat Model
● Functionality Evaluation
● Performance Evaluation
● Discussion



What is Deep Packet Inspection (DPI)?
● In-network middleboxes use DPI to examine and alter packets
● Used to enforce security policies

○ Intrusion Detection/Prevention, Exfiltration Prevention, Parental filtering, etc.

INTERNET

Middlebox



DPI and HTTPS
● HTTPS and other encryption protocols have dramatically grown in usage
● Packet payloads are encrypted, middleboxes can no longer inspect them
● To enable inspection, some systems support insecure HTTPS

○ Man-in-the-middle attack on SSL

Functionality
of

Middleboxes

Privacy
from

Encryption
or

Can we get both?



BlindBox: Both Privacy and DPI
● Performs inspection directly on encrypted payload
● Connection Setup: 

○ sender/receiver bootstrap off SSL handshake
○ Middlebox performs own connection setup using obfuscated rule encryption

● Send:
○ Encrypts traffic with SSL, tokenizes traffic by splitting into substrings, encrypts tokens
○



BlindBox: Both Privacy and DPI
● Detection

○ Middlebox receives both SSL-encrypted traffic and encrypted tokens
○ Detect module searches for matches between encrypted rules and encrypted tokens

● Receive
○ Receiver decrypts and authenticates traffic using normal SSL
○ Receiver also checks that encrypted tokens were encrypted properly by sender



Threat Model Summary
● Clients

○ Want to protect privacy from middlebox AND protection from each other
○ Requires: at least one client must be honest

● Middlebox
○ Honest but curious
○ Can only see what is necessary to enforce security policy

● Rule Generator
○ Must be trusted by both middlebox and clients
○ Cannot actually observe or alter traffic



Functionality Evaluation
● Can BlindBox implement the functionality required for each target system?

○ Protocol I: Exact String Matching
■ Parental Filtering + Document watermarking

○ Protocol II: Exact String Matching for Multiple Keywords
■ Extends support to IDS policies requiring multiple keywords

○ Protocol III: Probable Cause Privacy
■ Supports RegEx and scripting, by enabling decryption w/ probable cause



Functionality Evaluation
● Does BlindBox fail to detect any attacks/policy violations that standard 

implementations would detect?
○ Environment: college “capture the flag” contest for hacking servers
○ Compared to Snort, BlindBox detected:

97.1% of attack keywords
99% of the attack rules 



Performance Evaluation
● How long does it take to encrypt/detect a token?
● How long does the initial handshake take with the middlebox?
● How does BlindBox compare in detection time against other strawmen 

approaches?



Performance Evaluation
● How long are page downloads with BlindBox, excluding setup cost?

○ Single-core CPU can keep up with link rate



Performance Evaluation
● What is the computational overhead of BlindBox encryption, and how does it 

impact page load times?
○ Figure 4: Easy to see cost of encryption at a link capacity of 1Gbps
○ Can be mitigated with extra cores and parallelization



Performance Evaluation
● What is the bandwidth 

overhead of transmitting 
encrypted tokens for a typical 
web page?

○ Depends on what fraction of bytes 

are text/code that must be 
tokenized

○ Penalty is lower for pages 

consisting mostly of video/images 

since BlindBox doesn’t tokenize 
video/images.



Evaluation Highlights
● Functionality: 

○ Seems to cover the majority of use cases, esp. with protocol III

● Detection Time: similar to existing IDS
○ 186Mbps with BlindBox (compare to Snort at 85Mbps)

● Transmission Time: reasonable overhead
○ Page load completion time increases by 0.15-1x (ignoring setup)

● Setup Time: very slow
○ 97 sec for 3000 rules
○ This could be OK when connections are persistent



Discussion
● Alternatives to BlindBox? 

○ Read-only middlebox protocol?

● Limitations of the threat model? 
○ Can we always find a trusted rule generator?
○ Why must we keep rules hidden from endpoints?

■ Is it worth exposing rules to the ends in order to improve performance/reduce 
complexity?

○ Does decryption when matching a substring give MB too much power?

● Other applications of BlindBox?
○ IoT auditing? (Judson Wilson’s work)

● How do we feel about their results?
○ Do we believe the numbers?
○ Are their metrics relevant measures of “success”?


