Near Neighbor Search in
High Dimensional Data (1)

Motivation
Distance Measures
Shingling
Min-Hashing

Anand Rajaraman

Tycho Brahe

T

(g st b 450

PR

RUDOLPHIN £,

B EEEATE A

A iy e Ui
| TYCHONE,

iy
ey

jemw A

EUDOLFHI MATTHLE LR AR
| SR PR S T wi
i

e
| IoANNES KEPLERUS
Taiaas. s i myeds @ 0 i o ke

I 2

L e e el L LT T E IR ¥

.
Mo il

o —
[e ——
e

s Ty
T

Johannes Kepler

P? years = o AU

o Planet ——— _{;'_I-'-'-'-_' Tl
N ,f e e
7 % % ¥ 7/ | ko,
f "-.“ l.-'z \ '_\ / | '_“ l“-,
: :‘.:monlhs..| -———-____T_____?* 1 = ————I='!]
Sun / & months I'.I_ ".. Sun : a _,-' __,' 1
\\ zf:. \ Fi I""'-.'“I'\ : S I
\"H _.'/ff. \"--. __F'-,/ \ ", | __,.-'/fj
s - . T 5 O N) -
b ——— T

P = time o complete orbit
a = semi-major axis

A B C

... and Isaac Newton

Newton's Law of Universal Gravitation

F = >

l‘ll

Newton's 2nd Law

F = d/dt(mV)

Figure 11.0

mg

The Classical Model

— m— g —

gy L o by e

F Al BE &

RUDOLPHIN £,

LB R AT SR R R AT F e
s B 1

B ——
A, Abwrwsp e Vil e i

TYCHOMNE,
¥ Eym
o
PRIMUM ANMO CONCEFTA BT BRTTIN A
T L e e L e R L Tl B]
EREN NS AATRALTTVARIL FONT AWENE 00 SErw mei e

i i L
— e T

ey 7 o ¢ i e rraom: pmn s o
ST

l.iI'l-I.il'l..lllln'Hl"-ul-'r'l m iR AT
S D —

BN SRR A BT PEE R

[T AT SR R R i

EUDOLFHL MATTHELE FERDE N ARDL

LOANNES KEPLERUS
T T LT T e

O S Bl i AR R

| e

Theory

.
o
7
o
o
o

«
S
<

)
o
.

%
7

S

<
<
5
S
S
S
T
W
i
e
S
N
N
N
N
N

G

I,

7

$$§$$"
o
o
e
.
.
-
.
o
o
S
.
-

G
o

R
i
.
i 3
e
.
mz

o
o

&
&
&
o
o
o
)
4
&
&
&
&

Gi,

e
o
”

$$¢

e

y
v
S0

FLE s

s
& b e

2. Cantilever bear
[

& Rigid system o interconnected
bodies analyzed as a single unit

pap Weght of mechanical | pa—
|\ neglected h

Applications

Fraud Detection

Transaction
or Log in

Transaction or
Log-in Allowed

F 3

L 2

Authentication
Required

__Pass J_ Fail

Risk
Score

Y

Local FDS Server

=

Rules Engine

L

F 3

F 3

FD% Policy Check

Behawvioral Engine

% &

Model-based decision making

Neural Nets
Regression
Classifiers
Decision Trees

Model

Data Model Predictions

cene Completion Pro

Hays and Efros, SIGGRAPH 2007

The Bare Data Approach

The Web

/

Simple algorithms with G I Web Images
access to large datasets OORIC rommme

Web

Did you mean: argumentative

High Dimensional Data

* Many real-world problems
— Web Search and Text Mining

 Billions of documents, millions of terms

— Product Recommendations
« Millions of customers, millions of products

— Scene Completion, other graphics problems
* Image features

— Online Advertising, Behavioral Analysis
« Customer actions e.g., websites visited, searches

A common metaphor

* Find near-neighbors in high-D space
— documents closely matching query terms
— customers who purchased similar products
— products with similar customer sets
—images with similar features
— users who visited the same websites

 In some cases, result is set of nearest
neighbors

* In other cases, extrapolate result from
attributes of near-neighbors

Example: Question Answering

* Who killed Abraham Lincoln?
« What is the height of Mount Everest?

» Naive algorithm
— Find all web pages containing the terms
“killed” and “Abraham Lincoln” in close

proximity
— Extract k-grams from a small window around
the terms

— Find the most commonly occuring k-grams

Example: Question Answering

* Naive algorithm works fairly well!

« Some improvements

— Use sentence structure e.g., restrict to noun
phrases only

— Rewrite questions before matching

« “What is the height of Mt Everest’ becomes “The
height of Mt Everest is <blank>"

* The number of pages analyzed is more
important than the sophistication of the

NLP
— For simple questions

Reference: Dumais et al

The Curse of Dimesnsionality

1-d space

@)
@)
@)

2-d space

The Curse of Dimensionality

 Let’s take a data set with a fixed number N
of points

* As we increase the number of dimensions
in which these points are embedded, the
average distance between points keeps
increasing

* Fewer “neighbors” on average within a
certain radius of any given point

The Sparsity Problem

» Most customers have not purchased most
products

* Most scenes don’t have most features
« Most documents don’t contain most terms

« Easy solution: add more data!
— More customers, longer purchase histories
— More images
— More documents
— And there’s more of it available every day!

Example: Scene Completion

Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a
collection of 20,000 images

Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a
collection of 2 million images

Hays and Efros, SIGGRAPH 2007

Distance Measures

* We formally define “near neighbors” as
points that are a “small distance” apart

 For each use case, we need to define
what “distance” means
* Two major classes of distance measures:

— Euclidean
— Non-Euclidean

Euclidean Vs. Non-Euclidean

¢« A has some number of
real-valued dimensions and “dense” points.
— There is a notion of “average” of two points.
— A Euclidean distance i1s based on the

locations of points in such a space.

* A Non-Euclidean distance is based on
properties of points, but not their “location”
INn a space.

Axioms of a Distance Measure

 d Isa distance measure ifitis a function
from pairs of points to real numbers such

that:

B~ o=
A%A

Some Euclidean Distances

. d(X,y) = square root of the sum
of the squares of the differences between
x and y in each dimension.

— The most common notion of “distance.”
: sum of the differences in each
dimension.

— Manhattan distance = distance if you had to
travel along coordinates only.

Examples of Euclidean Distances

L,-norm:
dist(x,y) =
V@39
=5

b=(9,8)

L,-norm:
dist(x,y) =
4+3 =7

a = (5,5)

Another Euclidean Distance

- d(x,y) = the maximum of
the differences between x and y in
any dimension.

- Note: the maximum is the limit as »
goes to oo of the

Non-Euclidean Distances

» Cosine distance = angle between vectors
from the origin to the points in question.

» Edit distance = number of inserts and
deletes to change one string into another.

* Hamming Distance = number of positions
in which bit vectors differ.

Cosine Distance

» Think of a point as a vector from the
origin (0,0,...,0) to its location.

* Two points’ vectors make an angle,
whose cosine is the normalized dot-
product of the vectors: p+.p./|P||p1]-

:p;=00111; p, = 10011.

—P1-P2 = 2; |p4| = po| = V3.
— Cc0s(0) = 2/3; 6 Is about 48 degrees.

Cosine-Measure Diagram

P1

d (py, P) = O = arccos(

P>

1p1l)

Why C.D. Is a Distance Measure

(X,X) = 0 because arccos(1) = 0.

d(x
d(x,y) = d(y,x) by symmetry.
* d(x,y) > 0 because angles are chosen to
be in the range 0 to 180 degrees.

. physical reasoning.
If | rotate an angle from x to z and then

from z to y, | can't rotate less than from
X toy.

Edit Distance

* The edit distance of two strings is the
number of inserts and deletes of
characters needed to turn one into the
other. Equivalently:

d(x,y) = [x] + [y| - 2[LCS(x,y)

« LCS = Jongest common subsequence =
any longest string obtained both by
deleting from x and deleting from y.

Example: LCS

* X = abcde ; y = bcduve.

 Turn x into y by deleting a, then inserting
u and v after d.

— Edit distance = 3.
* Or, LCS(x,y) = bcde.
« Note that d(x,y) = |x| + |y| - 2|LCS(x,y)]
=5+6-2"4=3

Edit Distance Is a Distance Measure

* d(x,x) = 0 because 0 edits suffice.

* d(x,y) = d(y,x) because insert/delete are
Inverses of each other.

* d(x,y) > 0: no notion of negative edits.

. changing x to zand
then to y is one way to change x to y.

Variant Edit Distances

» Allow insert, delete, and mutate.
— Change one character into another.

« Minimum number of inserts, deletes, and
mutates also forms a distance measure.
» Ditto for any set of operations on strings.

: substring reversal OK for DNA
sequences

Hamming Distance

» Hamming distance is the number of
positions in which bit-vectors differ.

* d(pq, po) = 2 because the bit-vectors differ
in the 3 and 4" positions.

Jaccard Similarity

* The Jaccard Similarity of two sets is the
size of their intersection divided by the
size of their union.

—Sim (G4, Cy) = |CGiNGC,[/|C1uC,|.
 The Jaccard Distance between sets Is 1
minus their Jaccard similarity.

_d(C-l, C2) — 1 = |C1ﬁC2 /|C1UC2|

Example: Jaccard Distance

3 in intersection.

8 in union.

Jaccard similarity= 3/8
Jaccard distance = 5/8

Encoding sets as bit vectors

We can encode sets using 0/1(Bit, Boolean)
vectors
— One dimension per element in the universal set

Interpret set intersection as bitwise AND and
set union as bitwise OR

' p;=10111; p, = 10011.

Size of intersection = 3; size of union = 4,
Jaccard similarity (not distance) = 3/4.

d(x,y) = 1 — (Jaccard similarity) = 1/4.

Finding Similar Documents

 Locality-Sensitive Hashing (LSH) is a
general method to find near-neighbors in
high-dimensional data

« We'll introduce LSH by considering a
specific case: finding similar text
documents
— Also introduces additional techniques:

shingling, minhashing

* Then we’'ll discuss the generalized theory
behind LSH

Problem Statement

« Given a large number (N in the millions or
even billions) of text documents, find pairs
that are “near duplicates”

* Applications:
— Mirror websites, or approximate mirrors.
« Don’t want to show both in a search
— Plagiarism, including large quotations.
— Web spam detection

— Similar news articles at many news sites.
 Cluster articles by “same story.”

Near Duplicate Documents

« Special cases are easy
— ldentical documents

— Pairs where one document is completely
contained in another

« General case is hard

— Many small pieces of one doc can appear out
of order in another

* We first need to formally define “near
duplicates”

Documents as High Dimensional Data

« Simple approaches:
— Document = set of words appearing in doc
— Document = set of “important” words

— Don’t work well for this application. Why?

* Need to account for ordering of words
A different way: shingles

Shingles

* A k-shingle (or k-gram) for a document is
a sequence of k tokens that appears in
the document.

— Tokens can be characters, words or
something else, depending on application

— Assume tokens = characters for examples
. k=2; doc = abcab. Set of 2-
shingles = {ab, bc, ca}.
: shingles as a bag, count ab twice.
* Represent a doc by its set of k-shingles.

42

Working Assumption

* Documents that have lots of shingles in
common have similar text, even if the text
appears in different order.

 Careful: you must pick k large enough, or
most documents will have most shingles.

— k=51s OK for short documents; k=10 is
better for long documents.

43

Compressing Shingles

* To compress long shingles, we can
hash them to (say) 4 bytes.

* Represent a doc by the set of hash
values of its k-shingles.

« Two documents could (rarely) appear to
have shingles in common, when in fact
only the hash-values were shared.

44

Thought Question

 Why is it better to hash 9-shingles (say) to
4 bytes than to use 4-shingles?

: How random are the 32-bit
seqguences that result from 4-shingling?

45

Similarity metric

 Document = set of k-shingles

* Equivalently, each document is a 0/1
vector in the space of k-shingles
— Each unique shingle is a dimension
— Vectors are very sparse

A natural similarity measure is the Jaccard
similarity
— Sim (G4, Cy,) = |GiNG,[/|C1uG,|

Motivation for LSH

« Suppose we need to find near-duplicate
documents among N=1 million documents

* Naively, we'd have to compute pairwaise
Jaccard similarites for every pair of docs
—i.e, N(N-1)/2 = 5*10'!" comparisons
— At 10° secs/day and 10° comparisons/sec, it
would take 5 days

* For N =10 million, it takes more than a
year...

Key idea behind LSH

« Given documents (i.e., shingle sets) D1 and D2

 |If we can find a hash function h such that:
— if sim(D1,D2) is high, then with high probability
h(D1) = h(D2)
— if sim(D1,D2) is low, then with high probability
h(D1) # h(D2)
 Then we could hash documents into buckets,
and expect that “most” pairs of near duplicate
documents would hash into the same bucket

— Compare pairs of docs in each bucket to see if they
are really near-duplicates

Min-hashing

 Clearly, the hash function depends on the
similarity metric
— Not all similarity metrics have a suitable hash
function

» Fortunately, there is a suitable hash
function for Jaccard similarity

— Min-hashing

The shingle matrix

 Matrix where each document vector is a column

documents
1 10 |1 |0
1 (0 [0 |-
0 |1 |0 |
shingles 0o l1 lo |1
0 |1 |0 |
1 10 |1 |0
1 10 |1 |0

Min-hashing

 Define a hash function h as follows:

— Permute the rows of the matrix randomly
 Important: same permutation for all the vectors!
— Let C be a column (= a document)

— h(C) = the number of the first (in the permuted
order) row in which column C has 1

Minhashing Example

Input matrix
0 |1 |0

0
T

— | | OOl OO| = —
o | O —
- =+ O O OO

Surprising Property

» The probability (over all permutations
of the rows) that h(C,) = h(C,) is the
same as Sim(C,, C,)

* Thatis:
— Pr[h(Cy) = h(Cy)] = SIm(C;4, Cy)

» Let's prove it!

Proof (1) : Four Types of Rows

« Given columns C; and C,, rows may be
classified as:

G G,
a 1 1
b 1 0
C 0 1
d 0 0

» Also, a =# rows of type a, etc.
* Note Sim(C,, C,) =al(a+ b+ c).

Proof (2): The Clincher

C C
a 1 1
b 1 0
C 0 1
d 0 0

* Now apply a permutation

— Look down the permuted columns C, and C, until
we seeal.

— If it's a type-a row, then h(C,) = h(C,). If a type-b
or type-c row, then not.

— So Pr[h(C,) = h(C,)] =a/(a+ b +c)=SimC,, C,)

LSH: First Cut

» Hash each document using min-hashing

« Each pair of documents that hashes into
the same bucket is a candidate pair

« Assume we want to find pairs with
similarity at least 0.8.
— We'll miss 20% of the real near-duplicates

— Many false-positive candidate pairs
« e.g., We'll find 60% of pairs with similarity 0.6.

Minhash Signatures

* Fixup: Use several (e.g., 100) independent
min-hash functions to create a signature
Sig(C) for each column C

* The similarity of signatures is the fraction
of the hash functions in which they agree.

» Because of the minhash property, the
similarity of columns is the same as the
expected similarity of their signatures.

Minhash Signatures Example

Input matrix Signature matrix M

312 1 10 |0 | D 11 4
7111 O (1 |0 |- T 1o 5
6|3 0 |1 |0 |1 j>
216 O |1 |0 |1 Similarities:

1-3 2-4 1-2 3-4
1|/ 110 1 Col/Col{0.75 0.75 O 0
4115 1 10 |1 Sig/Sig|0.67 1.00 O 0

Implementation (1)

« Suppose N = 1 billion rows.

« Hard to pick a random permutation from
1...billion.

» Representing a random permutation
requires 1 billion entries.

« Accessing rows in permuted order leads
to thrashing.

Implementation (2)

* A good approximation to permuting
rows: pick 100 (?) hash functions
— hy,h,,...
— Forrows rand s, if h;(r) < h;(s), then r
appears before s in permutation /.

— We will use the same name for the hash
function and the corresponding min-hash
function

Example

P
U'I-hwl\.)l—tcg)

ORLR R OK

H O M=M= O

Implementation (3)

 For each column ¢ and each hash
function h;, keep a “slot” M (i, c).

— M(/, c) will become the smallest value of h;(r)
for which column ¢ has 1 inrow r

— Initialize to infinity
« Sort the input matrix so it is ordered by
rows

— S0 can iterate by reading rows sequentially
from disk

Implementation (4)

for each row r
for each column ¢
ifchas1inrowr

for each hash function h; do
if h;(r) < M(i, ¢) then
M (i, €) := h(r);

Example

J
O b wWNEH=O

=
ORLR R OK
H O M=M= O

A x) = xmod 5
g x) = 2x+1 mod 5

W= W

N = N = N =

OO ON ON oOnNn P

Implementation — (4)

« Often, data is given by column, not row.
— E.g., columns = documents, rows = shingles.

* |f so, sort matrix once so it is by row.
— This way we compute h;(r) only once for each
row
 Questions for thought:

— What's a good way to generate hundreds of
independent hash functions?

— How to implement min-hashing using
MapReduce?

The Big Picture

Docu-
ment

The set

of strings
of length &
that appear
in the doc-
ument

ingling >
/ ‘ y ‘ Hashing

\| _l Loca"ty-
Sh - er!hash

A 4

sensitive

Signatures .
short integer
vectors that
represent the
sets, and
reflect their
similarity

Candidate
pairs :

those pairs
of signatures
that we need
to test for
similarity.

