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High Dimensional Data

• Many real-world problems

– Web Search and Text Mining

• Billions of documents, millions of terms

– Product Recommendations

• Millions of customers, millions of products

– Scene Completion, other graphics problems

• Image features

– Online Advertising, Behavioral Analysis

• Customer actions e.g., websites visited, searches



A common metaphor

• Find near-neighbors in high-D space
– documents closely matching query terms

– customers who purchased similar products

– products with similar customer sets

– images with similar features

– users who visited the same websites

• In some cases, result is set of nearest 
neighbors 

• In other cases, extrapolate result from 
attributes of near-neighbors



Example: Question Answering

• Who killed Abraham Lincoln?

• What is the height of Mount Everest?

• Naïve algorithm

– Find all web pages containing the terms 
“killed” and “Abraham Lincoln” in close 
proximity

– Extract k-grams from a small window around 
the terms

– Find the most commonly occuring k-grams



Example: Question Answering

• Naïve algorithm works fairly well!

• Some improvements
– Use sentence structure e.g., restrict to noun 

phrases only

– Rewrite questions before matching 
• “What is the height of Mt Everest” becomes “The 

height of Mt Everest is <blank>”

• The number of pages analyzed is more 
important than the sophistication of the 
NLP
– For simple questions

Reference: Dumais et al



The Curse of Dimesnsionality

1-d space

2-d space



The Curse of Dimensionality

• Let’s take a data set with a fixed number N 

of points

• As we increase the number of dimensions 

in which these points are embedded, the 

average distance between points keeps 

increasing

• Fewer “neighbors” on average within a 

certain radius of any given point



The Sparsity Problem

• Most customers have not purchased most 

products

• Most scenes don’t have most features

• Most documents don’t contain most terms

• Easy solution: add more data!

– More customers, longer purchase histories

– More images

– More documents

– And there’s more of it available every day!



Hays and Efros, SIGGRAPH 2007

Example: Scene Completion



10 nearest neighbors from a

collection of 20,000 images
Hays and Efros, SIGGRAPH 2007



10 nearest neighbors from a

collection of 2 million images
Hays and Efros, SIGGRAPH 2007



Distance Measures

• We formally define “near neighbors” as 

points that are a “small distance” apart

• For each use case, we need to define 

what “distance” means

• Two major classes of distance measures:

– Euclidean

– Non-Euclidean



Euclidean Vs. Non-Euclidean

• A Euclidean space has some number of 

real-valued dimensions and “dense” points.

– There is a notion of “average” of two points.

– A Euclidean distance is based on the 
locations of points in such a space.

• A Non-Euclidean distance is based on 

properties of points, but not their “location” 

in a space.



Axioms of a Distance Measure

• d is a distance measure if it is a function 

from pairs of points to real numbers such 

that:

1. d(x,y) > 0. 

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality ).



Some Euclidean Distances

• L2 norm : d(x,y) = square root of the sum 

of the squares of the differences between 

x and y in each dimension.

– The most common notion of “distance.”

• L1 norm : sum of the differences in each 

dimension.

– Manhattan distance = distance if you had to 
travel along coordinates only.



Examples of Euclidean Distances

a = (5,5)

b = (9,8)
L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35



Another Euclidean Distance

• L∞ norm : d(x,y) = the maximum of 
the differences between x and y in 
any dimension.

• Note: the maximum is the limit as n
goes to ∞ of the Ln norm



Non-Euclidean Distances

• Cosine distance = angle between vectors 

from the origin to the points in question.

• Edit distance = number of inserts and 

deletes to change one string into another.

• Hamming Distance = number of positions 

in which bit vectors differ.



Cosine Distance

• Think of a point as a vector from the 

origin (0,0,…,0) to its location.

• Two points’ vectors make an angle, 

whose cosine is the normalized dot-

product of the vectors: p1.p2/|p2||p1|.

– Example: p1 = 00111; p2 = 10011.

– p1.p2 = 2; |p1| = |p2| = √3.

– cos(θ) = 2/3; θ is about 48 degrees.



Cosine-Measure Diagram

p1

p2p1.p2

θ

|p2|

d (p1, p2) = θ = arccos(p1.p2/|p2||p1|)



Why C.D. Is a Distance Measure

• d(x,x) = 0 because arccos(1) = 0.

• d(x,y) = d(y,x) by symmetry.

• d(x,y) > 0 because angles are chosen to 

be in the range 0 to 180 degrees.

• Triangle inequality: physical reasoning.  

If I rotate an angle from x to z and then 

from z to y, I can’t rotate less than from 

x to y.



Edit Distance

• The edit distance of two strings is the 
number of inserts and deletes of 
characters needed to turn one into the 
other.  Equivalently:

d(x,y) = |x| + |y| - 2|LCS(x,y)|

• LCS = longest common subsequence = 
any longest string obtained both by 
deleting from x and deleting from y.



Example: LCS

• x = abcde ; y = bcduve.

• Turn x into y by deleting a, then inserting 

u and v after d.

– Edit distance = 3.

• Or, LCS(x,y) = bcde.

• Note that d(x,y) = |x| + |y| - 2|LCS(x,y)| 

=  5 + 6 – 2*4 = 3 



Edit Distance Is a Distance Measure

• d(x,x) = 0 because 0 edits suffice.

• d(x,y) = d(y,x) because insert/delete are 

inverses of each other.

• d(x,y) > 0: no notion of negative edits.

• Triangle inequality: changing x to z and 

then to y is one way to change x to y.



Variant Edit Distances

• Allow insert, delete, and mutate.

– Change one character into another.

• Minimum number of inserts, deletes, and 

mutates also forms a distance measure.

• Ditto for any set of operations on strings.

– Example: substring reversal OK for DNA 
sequences



Hamming Distance

• Hamming distance is the number of 

positions in which bit-vectors differ.

• Example: p1 = 10101; p2 = 10011.

• d(p1, p2) = 2 because the bit-vectors differ 

in the 3rd and 4th positions.



Jaccard Similarity 

• The Jaccard Similarity of two sets is the 

size of their intersection divided by the 

size of their union.

– Sim (C1, C2) = |C1∩C2|/|C1∪C2|.

• The Jaccard Distance between sets is 1 

minus their Jaccard similarity. 

– d(C1, C2) = 1 - |C1∩C2|/|C1∪C2|.



Example: Jaccard Distance

3 in intersection.
8 in union.
Jaccard similarity= 3/8
Jaccard distance = 5/8



Encoding sets as bit vectors

• We can encode sets using 0/1(Bit, Boolean) 
vectors 

– One dimension per element in the universal set

• Interpret set intersection as bitwise AND and 
set union as bitwise OR

• Example: p1 = 10111; p2 = 10011.

• Size of intersection = 3; size of union = 4, 
Jaccard similarity (not distance) = 3/4.

• d(x,y) = 1 – (Jaccard similarity) = 1/4.



Finding Similar Documents

• Locality-Sensitive Hashing (LSH) is a 

general method to find near-neighbors in 

high-dimensional data

• We’ll introduce LSH by considering a 

specific case: finding similar text 

documents

– Also introduces additional techniques: 
shingling, minhashing

• Then we’ll discuss the generalized theory 

behind LSH



Problem Statement

• Given a large number (N in the millions or 

even billions) of text documents, find pairs 

that are “near duplicates” 

• Applications:

– Mirror websites, or approximate mirrors.

• Don’t want to show both in a search

– Plagiarism, including large quotations.

– Web spam detection

– Similar news articles at many news sites.

• Cluster articles by “same story.”



Near Duplicate Documents

• Special cases are easy

– Identical documents

– Pairs where one document is completely 
contained in another

• General case is hard

– Many small pieces of one doc can appear out 
of order in another

• We first need to formally define “near 

duplicates”



Documents as High Dimensional Data

• Simple approaches:

– Document = set of words appearing in doc

– Document = set of “important” words

– Don’t work well for this application. Why?

• Need to account for ordering of words

• A different way: shingles
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Shingles

• A k-shingle (or k-gram) for a document is 

a sequence of k tokens that appears in 

the document.

– Tokens can be characters, words or 
something else, depending on application

– Assume tokens = characters for examples

• Example: k=2; doc = abcab.  Set of 2-

shingles = {ab, bc, ca}.

– Option: shingles as a bag, count ab twice.

• Represent a doc by its set of k-shingles.
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Working Assumption

• Documents that have lots of shingles in 

common have similar text, even if the text 

appears in different order.

• Careful: you must pick k large enough, or 

most documents will have most shingles.

– k = 5 is OK for short documents; k = 10 is 
better for long documents.
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Compressing Shingles

• To compress long shingles, we can 

hash them to (say) 4 bytes.

• Represent a doc by the set of hash 

values of its k-shingles.

• Two documents could (rarely) appear to 

have shingles in common, when in fact 

only the hash-values were shared.
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Thought Question

• Why is it better to hash 9-shingles (say) to 

4 bytes than to use 4-shingles?

• Hint: How random are the 32-bit 

sequences that result from 4-shingling?



Similarity metric

• Document = set of k-shingles

• Equivalently, each document is a 0/1 

vector in the space of k-shingles

– Each unique shingle is a dimension

– Vectors are very sparse

• A natural similarity measure is the Jaccard 

similarity

– Sim (C1, C2) = |C1∩C2|/|C1∪C2|



Motivation for LSH

• Suppose we need to find near-duplicate 

documents among N=1 million documents

• Naively, we’d have to compute pairwaise 

Jaccard similarites for every pair of docs

– i.e, N(N-1)/2 ≈ 5*1011 comparisons

– At 105 secs/day and 106 comparisons/sec, it 
would take 5 days

• For N = 10 million, it takes more than a 

year…



Key idea behind LSH

• Given documents (i.e., shingle sets) D1 and D2

• If we can find a hash function h such that:

– if sim(D1,D2) is high, then with high probability   

h(D1) = h(D2)

– if sim(D1,D2) is low, then with high probability      

h(D1) ≠ h(D2)

• Then we could hash documents into buckets, 
and expect that “most” pairs of near duplicate 
documents would hash into the same bucket

– Compare pairs of docs in each bucket to see if they 

are really near-duplicates



Min-hashing

• Clearly, the hash function depends on the 

similarity metric

– Not all similarity metrics have a suitable hash 
function

• Fortunately, there is a suitable hash 

function for Jaccard similarity

– Min-hashing



The shingle matrix

• Matrix where each document vector is a column 

0101

0101

1010

1010

1010

1001

0101 

documents

shingles



Min-hashing

• Define a hash function h as follows:

– Permute the rows of the matrix randomly

• Important: same permutation for all the vectors!

– Let C be a column (= a document)

– h(C) = the number of the first (in the permuted 
order) row in which column C has 1



Minhashing Example

Input matrix 

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

1212
h



Surprising Property

• The probability (over all permutations 

of the rows) that h(C1) = h(C2) is the 

same as Sim(C1, C2)

• That is:

– Pr[h(C1) = h(C2)] = Sim(C1, C2) 

• Let’s prove it!



Proof (1) : Four Types of Rows

• Given columns C1 and C2, rows may be 
classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

• Also, a = # rows of type a , etc.

• Note Sim(C1, C2) = a/(a + b + c ).



Proof (2): The Clincher

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

• Now apply a permutation
– Look down the permuted columns C1 and C2 until 

we see a 1.

– If it’s a type-a row, then h(C1) = h(C2).  If a type-b
or type-c row, then not.

– So Pr[h(C1) = h(C2)] = a/(a + b + c) = Sim(C1, C2) 



LSH: First Cut

• Hash each document using min-hashing

• Each pair of documents that hashes into 

the same bucket is a candidate pair

• Assume we want to find pairs with 

similarity at least 0.8.

– We’ll miss 20% of the real near-duplicates

– Many false-positive candidate pairs

• e.g., We’ll find 60% of pairs with similarity 0.6.



Minhash Signatures

• Fixup: Use several (e.g., 100) independent 

min-hash functions to create a signature

Sig(C) for each column C

• The similarity of signatures is the fraction 

of the hash functions in which they agree.

• Because of the minhash property, the 

similarity of columns is the same as the 

expected similarity of their signatures.



Minhash Signatures Example
Input matrix 

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0



Implementation (1)

• Suppose N = 1 billion rows.

• Hard to pick a random permutation from 

1…billion.

• Representing a random permutation 

requires 1 billion entries.

• Accessing rows in permuted order leads 

to thrashing.



Implementation (2)

• A good approximation to permuting 

rows: pick 100 (?) hash functions

– h1 , h2 ,…

– For rows r and s, if hi (r ) < hi (s), then r
appears before s in permutation i.

– We will use the same name for the hash 
function and the corresponding min-hash 
function 



Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5

h(1)=1, h(2)=2, h(3)=3, h(4)=4, h(5)=0

h(C1) = 1

h(C2) = 0

g(x) = 2x+1 mod 5

g(1)=3, g(2)=0, g(3)=2, g(4)=4, g(5)=1

g(C1) = 2

g(C2) = 0

Sig(C1) = [1,2]

Sig(C2) = [0,0]



Implementation (3)

• For each column c and each hash 

function hi , keep a “slot” M (i, c).

– M(i, c) will become the smallest value of hi (r ) 
for which column c has 1 in row r

– Initialize to infinity

• Sort the input matrix so it is ordered by 

rows

– So can iterate by reading rows sequentially 
from disk



Implementation (4)

for each row r

for each column c 

if c has 1 in row r

for each hash function hi do

if hi (r ) < M(i, c) then

M (i, c) := hi (r );



Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1 -
g(1) = 3 3 -

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2



Implementation – (4)

• Often, data is given by column, not row.
– E.g., columns = documents, rows = shingles.

• If so, sort matrix once so it is by row.
– This way we compute hi (r) only once for each 

row

• Questions for thought: 
– What’s a good way to generate hundreds of 

independent hash functions?

– How to implement min-hashing using 
MapReduce?



The Big Picture

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.


