Webgraph structure and PageRank
Two More Datasets Available

- TheFind.com
 - Large set of products (~6GB compressed)
 - For each product
 - Attributes
 - Related products

- Craigslist
 - About 3 weeks of data (~7.5GB compressed)
 - Text of posts, plus category metadata
 - e.g., match buyers and sellers
How big is the Web?

- Technically, infinite
- Much duplication (30-40%)
- Best estimate of “unique” static HTML pages comes from search engine claims
 - Google = 8 billion(?), Yahoo = 20 billion

What is the structure of the Web? How is it organized?
Web as a Graph

I teach a class on Networks.

Networks Course: We have a class blog

Networks Class Blog: This blog post is about Microsoft

Microsoft Home Page
In early days of the Web links were navigational.
Today many links are transactional.
Directed graphs

- Two types of directed graphs:
 - DAG – directed acyclic graph:
 - Has no cycles: if u can reach v, then v can not reach u
 - Strongly connected:
 - Any node can reach any node via a directed path

- Any directed graph can be expressed in terms of these two types
Strongly connected component (SCC) is a set of nodes S so that:

- Every pair of nodes in S can reach each other
- There is no larger set containing S with this property
Graph structure of the Web

- Take a large snapshot of the web and try to understand how it’s SCCs “fit” as a DAG.

- **Computational issues:**
 - Say want to find SCC containing specific node v?
 - Observation:
 - Out(v) ... nodes that can be reachable from v (BFS out)
 - SCC containing v:
 - = Out(v, G) ∩ In(v, G)
 - = Out(v, G) ∩ Out(v, \(\bar{G} \))
 where \(\bar{G} \) is G with directions of all edge flipped
Graph structure of the Web

- There is a giant SCC
- Broder et al., 2000:
 - Giant weakly connected component: 90% of the nodes
250 million webpages, 1.5 billion links [Altavista]
Diameter of the Web

- Diameter (average directed shortest path length) is 19 (in 1999)
Diameter of the Web

- Average distance:
 75% of time there is no directed path from start to finish page
 - Follow in-links (directed): 16.12
 - Follow out-links (directed): 16.18
 - Undirected: 6.83

- Diameter of SCC (directed):
 - At least 28
Degree distribution on the Web

[Broder et al., '00]
Degrees in real networks

- Take real network plot a histogram of p_k vs. k
- Plot the same data on log-log axis:

\[p_k = \beta k^{-\alpha} \]

\[\log p_k = \log \beta - \alpha \log k \]
Exponential tail vs. Power-law tail

Exponential: $Y \sim e^{-X}$

Power law: $Y \sim X^{-2}$
Power law degree exponents

- Power law degree exponent is typically $2 < \alpha < 3$
 - Web graph [Broder et al. 00]:
 - $\alpha_{in} = 2.1$, $\alpha_{out} = 2.4$
 - Autonomous systems [Faloutsos et al. 99]:
 - $\alpha = 2.4$
 - Actor collaborations [Barabasi-Albert 00]:
 - $\alpha = 2.3$
 - Citations to papers [Redner 98]:
 - $\alpha \approx 3$
 - Online social networks [Leskovec et al. 07]:
 - $\alpha \approx 2$
Power-law network

Random network
(Erdos-Renyi random graph)

Degree distribution is Binomial

Scale-free (power-law) network

Degree distribution is Power-law

Function is scale free if:
\[f(ax) = c f(x) \]
Web pages are not equally “important”
 - www.joe-schmoe.com vs www.stanford.edu

Since there is big diversity in the connectivity of the webgraph we can rank pages by the link structure
Links as votes

- First try:
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 inlinks
 - www.joe-schmoe.com has 1 inlink
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!
Simple recursive formulation

- Each link’s vote is proportional to the importance of its source page
- If page P with importance x has n out-links, each link gets x/n votes
- Page P’s own importance is the sum of the votes on its in-links
The web in 1839

\[y = y/2 + a/2 \]
\[a = y/2 + m \]
\[m = a/2 \]
Solving the flow equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
Matrix formulation

- Matrix M has one row and one column for each web page
- Suppose page j has n out-links
 - If $j \rightarrow i$, then $M_{ij} = 1/n$
 - else $M_{ij} = 0$
- M is a column stochastic matrix
 - Columns sum to 1
- Suppose r is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector
 - $|r| = 1$
Suppose page j links to 3 pages, including i.
The flow equations can be written as:

\[r = Mr \]

So the rank vector is an eigenvector of the stochastic web matrix.

- In fact, its first or principal eigenvector, with corresponding eigenvalue 1.
Example

\[y = y/2 + a/2 \]
\[a = y/2 + m \]
\[m = a/2 \]

\[
\begin{array}{ccc}
Y! & A & MS \\
Y! & \frac{1}{2} & \frac{1}{2} & 0 \\
A & \frac{1}{2} & 0 & 1 \\
MS & 0 & \frac{1}{2} & 0 \\
\end{array}
\]

\[r = Mr \]
Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $r^0 = [1/N,\ldots,1/N]^T$
- Iterate: $r^{k+1} = Mr^k$
- Stop when $|r^{k+1} - r^k|_1 < \varepsilon$
 - $|x|_1 = \sum_{1 \leq i \leq N} |x_i|$ is the L_1 norm
 - Can use any other vector norm e.g., Euclidean
Power Iteration Example

- Power iteration:
 - Set $r_i = 1/n$
 - $r_i = \sum_j M_{ij} r_j$
 - And iterate

- Example:

 \[
 \begin{array}{cccccc}
 y & 1/3 & 1/3 & 5/12 & 3/8 & 2/5 \\
 a = & 1/3 & 1/2 & 1/3 & 11/24 & \ldots & 2/5 \\
 m & 1/3 & 1/6 & 1/4 & 1/6 & 1/5 \\
 \end{array}
 \]
Random Walk Interpretation

- Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time $t+1$, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let $\mathbf{p}(t)$ be a vector whose i^{th} component is the probability that the surfer is at page i at time t
 - $\mathbf{p}(t)$ is a probability distribution on pages
The stationary distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 - $p(t+1) = Mp(t)$
- Suppose the random walk reaches a state such that $p(t+1) = Mp(t) = p(t)$
 - Then $p(t)$ is called a stationary distribution for the random walk
- Our rank vector r satisfies $r = Mr$
 - So it is a stationary distribution for the random surfer
Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $t = 0$.
Some pages are “dead ends” (have no out-links)
 - Such pages cause importance to leak out

Spider traps (all out links are within the group)
 - Eventually spider traps absorb all importance
Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem
Spider traps

- **Power iteration:**
 - Set $r_i=1$
 - $r_i = \sum_j M_{ij} r_j$
 - And iterate

- **Example:**

<table>
<thead>
<tr>
<th></th>
<th>Y!</th>
<th>A</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y!</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MS</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>1</th>
<th>1</th>
<th>3/4</th>
<th>5/8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>3/8</td>
<td>...</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>3/2</td>
<td>7/4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Solution: Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β, follow a link at random
 - With probability $1-\beta$, jump to some page uniformly at random
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps
Random teleports ($\beta = 0.8$)

$$
\begin{align*}
\begin{array}{ccc}
\text{Yahoo} & \text{Amazon} & \text{M'soft} \\
0.2 \times \frac{1}{3} & 0.8 \times \frac{1}{2} & 0.2 \times \frac{1}{3} \\
\frac{1}{2} & 0.8 \times \frac{1}{2} & 0.2 \times \frac{1}{3} \\
0.8 \times \frac{1}{2} & 0.2 \times \frac{1}{3} & 0.2 \times \frac{1}{3}
\end{array}
\end{align*}
$$

$$
\begin{align*}
\begin{array}{ccc}
y & a & m \\
1/2 & 1/2 & 0 \\
1/2 & 1/2 & 0 \\
0 & 1/2 & 1
\end{array}
\end{align*}
$$

$$
\begin{align*}
\begin{array}{ccc}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{array}
\end{align*}
$$

$$
\begin{align*}
\begin{array}{ccc}
y & a & m \\
7/15 & 7/15 & 1/15 \\
7/15 & 1/15 & 1/15 \\
1/15 & 7/15 & 13/15
\end{array}
\end{align*}
$$
Random teleports ($\beta = 0.8$)

\[
\begin{pmatrix}
0.8 & 1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 & + 0.2 \\
1/3 & 1/3 & 1/3 & 1/3 \\
\end{pmatrix}
\]

\[
\begin{align*}
y & 7/15 & 7/15 & 1/15 \\
a & 7/15 & 1/15 & 1/15 \\
m & 1/15 & 7/15 & 13/15 \\
\end{align*}
\]

\[
\begin{align*}
y & 1 & 1.00 & 0.84 & 0.776 & 7/11 \\
a & = & 1 & 0.60 & 0.60 & 0.536 & \ldots & 5/11 \\
m & 1 & 1.40 & 1.56 & 1.688 & 21/11 \\
\end{align*}
\]
Dead ends

- Power iteration:
 - Set $r_i=1$
 - $r_i = \sum_j M_{ij} r_j$
 - And iterate

- Example:

<table>
<thead>
<tr>
<th></th>
<th>Y!</th>
<th>A</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>1</th>
<th>1</th>
<th>3/4</th>
<th>5/8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>3/8</td>
<td>...</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>
Dealing with dead-ends

- Teleport
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph
Suppose there are N pages

- Consider a page j, with set of outlinks O(j)
- We have $M_{ij} = 1/|O(j)|$ when $j \rightarrow i$ and $M_{ij} = 0$ otherwise

The random teleport is equivalent to

- adding a teleport link from j to every other page with probability $(1-\beta)/N$
- reducing the probability of following each outlink from $1/|O(j)|$ to $\beta/|O(j)|$
- Equivalent: tax each page a fraction $(1-\beta)$ of its score and redistribute evenly
Page Rank

- Construct the N x N matrix A as follows
 - $A_{ij} = \beta M_{ij} + (1-\beta)/N$
- Verify that A is a stochastic matrix
- The page rank vector r is the principal eigenvector of this matrix
 - satisfying $r = Ar$
- Equivalently, r is the stationary distribution of the random walk with teleports
Key step is matrix-vector multiplication
- $r_{\text{new}} = Ar_{\text{old}}$

Easy if we have enough main memory to hold A, r_{old}, r_{new}

Say $N = 1$ billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N^2 entries
 - 10^{18} is a large number!
r = Ar, where

\[A_{ij} = \beta M_{ij} + (1 - \beta)/N \]

\[r_i = \sum_{1 \leq j \leq N} A_{ij} r_j \]

\[r_i = \sum_{1 \leq j \leq N} \left[\beta M_{ij} + (1 - \beta)/N \right] r_j \]

\[= \beta \sum_{1 \leq j \leq N} M_{ij} r_j + (1 - \beta)/N \sum_{1 \leq j \leq N} r_j \]

\[= \beta \sum_{1 \leq j \leq N} M_{ij} r_j + (1 - \beta)/N, \text{ since } |r| = 1 \]

\[r = \beta Mr + [(1 - \beta)/N]_N \]

where \([x]_N\) is an N-vector with all entries \(x\)
We can rearrange the page rank equation:

- \(r = \beta M \cdot r + \left(\frac{1-\beta}{N}\right)_N \)
- \(\left(\frac{1-\beta}{N}\right)_N \) is an N-vector with all entries \((1-\beta)/N\)
- \(M \) is a sparse matrix!
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute \(r^{\text{new}} = \beta M \cdot r^{\text{old}} \)
 - Add a constant value \((1-\beta)/N\) to each entry in \(r^{\text{new}} \)
Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store r^{old} and matrix M on disk

Basic Algorithm:
- **Initialize:** $r^{\text{old}} = [1/N]_N$
- **Iterate:**
 - **Update:** Perform a sequential scan of M and r^{old} to update r^{new}
 - Write out r^{new} to disk as r^{old} for next iteration
 - Every few iterations, compute $|r^{\text{new}} - r^{\text{old}}|$ and stop if it is below threshold
 - Need to read in both vectors into memory
Initialize all entries of r^{new} to $(1-\beta)/N$

For each page p (out-degree n):
Read into memory: p, n, $dest_1, \ldots, dest_n$, $r^{old}(p)$
for $j = 1..n$:
\[r^{new}(dest_j) += \beta r^{old}(p)/n \]
In each iteration, we have to:

- Read \(r^{\text{old}} \) and \(M \)
- Write \(r^{\text{new}} \) back to disk
- IO Cost = \(2|r| + |M| \)

What if we had enough memory to fit both \(r^{\text{new}} \) and \(r^{\text{old}} \)?

What if we could not even fit \(r^{\text{new}} \) in memory?

- 10 billion pages
Block-based update algorithm

<table>
<thead>
<tr>
<th>r\text{new}</th>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0, 5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r\text{old}</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and r^{old} once for each block
- k scans of M and r^{old}
 - $k(|M| + |r|) + |r| = k|M| + (k+1)|r|$
- Can we do better?
- Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration
Block-Stripe Update Algorithm

The table shows the relationships between source (src), degree, and destination.

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

The notation `r_{new}` and `r_{old}` indicate the new and old rank values, respectively.
Block-Stripe Analysis

- Break \mathbf{M} into stripes
 - Each stripe contains only destination nodes in the corresponding block of \mathbf{r}^{new}
- Some additional overhead per stripe
 - But usually worth it
- Cost per iteration
 - $|\mathbf{M}|(1+\varepsilon) + (k+1)|\mathbf{r}|$