Personalized PageRank, HITS, Web spam

CS345a: Data Mining
Jure Leskovec and Anand Rajaraman
Stanford University
Instead of generic popularity, can we measure popularity within a topic?

- E.g., computer science, health
- Bias the random walk
 - When the random walker teleports, he picks a page from a set S of web pages
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic (www.dmoz.org)
- For each teleport set S, we get a different rank vector r_S
Let:

- \(A_{ik} = \beta M_{ik} + (1-\beta)/|S| \) if \(i \in S \)
- \(\beta M_{ik} \) otherwise

- \(A \) is stochastic!

We have weighted all pages in the teleport set \(S \) equally

- Could also assign different weights to pages
Suppose $S = \{1\}$, $\beta = 0.8$

Note how we initialize the PageRank vector differently from the unbiased PageRank case.
How well does TSPR work?

- Experimental results [Haveliwala 2000]
- Picked 16 topics
 - Teleport sets determined using DMOZ
 - E.g., arts, business, sports,…
- “Blind study” using volunteers
 - 35 test queries
 - Results ranked using PageRank and TSPR of most closely related topic
 - E.g., bicycling using Sports ranking
 - In most cases volunteers preferred TSPR ranking
Which topic ranking to use?

- User can pick from a menu
- Use Naïve Bayes to classify query into a topic
- Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., “basketball” followed by “Jordan”
- User context e.g., user’s My Yahoo settings, bookmarks, ...
Goal:
- Don’t just find newspapers but also find “experts” – people who link in a coordinated way to many good newspapers

Idea: link voting
- Quality as an expert (hub):
 - Total sum of votes of pages pointed to
- Quality as an content (authority):
 - Total sum of votes of experts
- Principle of repeated improvement

NYT: 10
Ebay: 3
Yahoo: 3
CNN: 8
WSJ: 9
Counting in-links: Authority

- SJ Merc News: 2 votes
- Wall St. Journal: 2 votes
- New York Times: 4 votes
- USA Today: 3 votes
- Facebook: 1 vote
- Yahoo!: 3 votes
- Amazon: 3 votes
Expert quality: Hub
Reweighting
Interesting documents fall into two classes:

1. **Authorities** are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers

2. **Hubs** are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers
Mutually recursive definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors h and a
Each page i has 2 kinds of scores:

- **Hub** score: h_i
- **Authority** score: a_i

Algorithm:

- Initialize: $a_i = h_i = 1$
- Then keep iterating:
 - Authority: $a_j = \sum h_i$
 - Hub: $h_i = \sum a_j$
 - Normalize: $\sum a_i = 1$, $\sum h_i = 1$
HITS uses adjacency matrix

\[A[i, j] = \begin{cases} 1 & \text{if page } i \text{ links to page } j, \\ 0 & \text{else} \end{cases} \]

\[A^T, \text{ the transpose of } A, \text{ is similar to the PageRank matrix } M \text{ but } A^T \text{ has 1’s where } M \text{ has fractions} \]
Example

\[A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix} \]
Hubs and Authorities

- Notation:
 - Vector $a = (a_1, \ldots, a_n)$, $h = (h_1, \ldots, h_n)$
 - Adjacency matrix $(n \times n)$: $A_{ij} = 1$ if $i \rightarrow j$

- Then:
 \[
 h_i = \sum_{i \rightarrow j} a_j \iff h_i = \sum_j A_{ij} a_j
 \]

- So: $h = Aa$

- Likewise:
 \[
 a = A^T h
 \]
The hub score of page i is proportional to the sum of the authority scores of the pages it links to: $h = \lambda Aa$

- Constant λ is a scale factor, $\lambda = 1/\sum h_i$

The authority score of page i is proportional to the sum of the hub scores of the pages it is linked from: $a = \mu A^T h$

- Constant μ is scale factor, $\mu = 1/\sum a_i$
The HITS algorithm:

- Initialize h, a to all 1’s
- Repeat:
 - $h = Aa$
 - Scale h so that its sums to 1.0
 - $a = A^T h$
 - Scale a so that its sums to 1.0
- Until h, a converge (i.e., change very little)
Example

\[A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \]

\[
\begin{align*}
\text{a(yahoo)} &= 1 & 1 & 1 & 1 & \cdots & 1 \\
\text{a(amazon)} &= 1 & 1 & 4/5 & 0.75 & \cdots & 0.732 \\
\text{a(m’soft)} &= 1 & 1 & 1 & 1 & \cdots & 1 \\
\text{h(yahoo)} &= 1 & 1 & 1 & 1 & \cdots & 1.000 \\
\text{h(amazon)} &= 1 & 2/3 & 0.71 & 0.73 & \cdots & 0.732 \\
\text{h(m’soft)} &= 1 & 1/3 & 0.29 & 0.27 & \cdots & 0.268
\end{align*}
\]
Algorithm:
- Set: \(a = h = 1^n \)
- Repeat:
 - \(h = Ma, \quad a = M^T h \)
 - Normalize
- Then: \(a = M^T (Ma) \)

Thus, in 2k steps:
- \(a = (M^T M)^k a \)
- \(h = (MM^T)^k h \)

a is being updated (in 2 steps):
\(M^T (Ma) = (M^T M) a \)

h is updated (in 2 steps):
\(M (M^T h) = (MM^T) h \)

Repeated matrix powering
Existence and Uniqueness

- $h = \lambda A a$
- $a = \mu A^T h$
- $h = \lambda \mu A^T A^T h$
- $a = \lambda \mu A^T A a$

- Under reasonable assumptions about A, the HITS iterative algorithm converges to vectors h^* and a^*:
 - h^* is the \textit{principal eigenvector} of matrix AA^T
 - a^* is the \textit{principal eigenvector} of matrix $A^T A$
Bipartite cores

- Hubs
- Authorities

Most densely-connected core (primary core)

Less densely-connected core (secondary core)
A single topic can have many bipartite cores

- Corresponding to different meanings or points of view:
 - abortion: pro-choice, pro-life
 - evolution: darwinian, intelligent design
 - jaguar: auto, Mac, NFL team, *panthera onca*

How to find such secondary cores?
Finding secondary cores

- Once we find the primary core, we can remove its links from the graph
- Repeat HITS algorithm on residual graph to find the next bipartite core
- Roughly, correspond to non-primary eigenvectors of AA^T and A^TA
- We need a well-connected graph of pages for HITS to work well:
PageRank and HITS are two solutions to the same problem:

- What is the value of an in-link from u to v?
- In the PageRank model, the value of the link depends on the links into u.
- In the HITS model, it depends on the value of the other links out of u.

The destinies of PageRank and HITS post-1998 were very different.
Web Spam

- Search is the default gateway to the web

- Very high premium to appear on the first page of search results:
 - e-commerce sites
 - advertising-driven sites

Welcome to MichaelMoore.com!
Official site of the gaggle of corporations, creator of the film Roger and Me and the television show The Awful Truth. Includes mailing list, message board, ...
www.michaelmoore.com/ - 35k - Sep 1, 2005 - Cached - Similar pages

Welcome to MichaelMoore.com!
Official site of the gaggle of corporations, creator of the film Roger and Me and the television show The Awful Truth. Includes mailing list, message board, ...
www.michaelmoore.com/ - 35k - Sep 1, 2005 - Cached - Similar pages

BBC NEWS | Americas | Miserable failure | links to Bush
Web users manipulate a popular search engine so an unflattering description leads to the president's page.
news.bbc.co.uk/2/hi/americas/5296443.stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure
A search for miserable failure on Google brings up the official George W. Bush biography from the US White House web site. Dismissed by Google as not a ...
scheduling@watch.com/sensport/article.php?32946101 - 45k - Sep 1, 2005 - Cached - Similar pages
What is web spam?

- **Spamming:**
 - any deliberate action to boost a web page’s position in search engine results,
 - incommensurate with page’s real value

- **Spam:**
 - web pages that are the result of spamming

- This is a very broad definition
 - SEO industry might disagree!
 - SEO = search engine optimization

- Approximately **10-15%** of web pages are spam
Web Spam Taxonomy

- The treatment by Gyongyi & Garcia-Molina:
 - **Boosting techniques**
 - Techniques for achieving high relevance/importance for a web page
 - **Hiding techniques**
 - Techniques to hide the use of boosting
 - From humans and web crawlers
Boosting techniques

- **Term spamming**
 - Manipulating the text of web pages in order to appear relevant to queries

- **Link spamming**
 - Creating link structures that boost PageRank or hubs and authorities scores
Term Spamming

- Repetition:
 - of one or a few specific terms e.g., free, cheap, viagra
 - Goal is to subvert TF-IDF ranking schemes
- Dumping:
 - of a large number of unrelated terms
 - e.g., copy entire dictionaries
- Weaving:
 - Copy legitimate pages and insert spam terms at random positions
- Phrase Stitching:
 - Glue together sentences and phrases from different sources
Three kinds of web pages from a spammer’s point of view:

- Inaccessible pages
- Accessible pages:
 - e.g., blog comments pages
 - spammer can post links to his pages
- Own pages:
 - Completely controlled by spammer
 - May span multiple domain names
Spammer’s goal:

- Maximize the PageRank of target page \(t \)

Technique:

- Get as many links from accessible pages as possible to target page \(t \)
- Construct “link farm” to get PageRank multiplier effect
Link Farms

One of the most common and effective organizations for a link farm
Suppose rank contributed by accessible pages = x

Let PageRank of target page = y

Rank of each “farm” page = $\beta y/M + (1-\beta)/N$

$$y = x + \beta M[\beta y/M + (1-\beta)/N] + (1-\beta)/N$$

$$= x + \beta^2 y + \beta(1-\beta)M/N + (1-\beta)/N$$

Very small; ignore

$$y = x/(1-\beta^2) + cM/N$$

where $c = \beta/(1+\beta)$
y = \frac{x}{1-\beta^2} + \frac{cM}{N}

where \(c = \frac{\beta}{1+\beta} \)

For \(\beta = 0.85 \), \(\frac{1}{(1-\beta^2)} = 3.6 \)

Multiplier effect for “acquired” PageRank

By making \(M \) large, we can make \(y \) as large as we want
Detecting Spam

- **Term spamming:**
 - Analyze text using statistical methods:
 - E.g., Naïve Bayes, Logistic regression
 - Similar to email spam filtering
 - Also useful: detecting approximate duplicate pages
- **Link spamming:**
 - Open research area
 - One approach: TrustRank
TrustRank idea

- Basic principle: approximate isolation
 - It is rare for a “good” page to point to a “bad” (spam) page

- Sample a set of “seed pages” from the web

- Have an oracle (human) identify the good pages and the spam pages in the seed set
 - Expensive task
 - Must make seed set as small as possible
Trust Propagation

- Call the subset of seed pages that are identified as “good” the “trusted pages”

- Set trust of each trusted page to 1

- **Propagate** trust through links:
 - Each page gets a trust value between 0 and 1
 - Use a threshold value and mark all pages below the trust threshold as spam
Rules for trust propagation

- **Trust attenuation:**
 - The degree of trust conferred by a trusted page decreases with distance

- **Trust splitting:**
 - The larger the number of out-links from a page, the less scrutiny the page author gives each out-link
 - Trust is “split” across out-links
Suppose trust of page p is t_p
- Set of out-links o_p

For each $q \in o_p$, p confers the trust:
- $\beta \frac{t_p}{|o_p|}$ for $0 < \beta < 1$

Trust is additive
- Trust of p is the sum of the trust conferred on p by all its in-linked pages

Note similarity to Topic-Specific PageRank
- Within a scaling factor, TrustRank = PageRank with trusted pages as teleport set
Two conflicting considerations:

- Human has to inspect each seed page, so seed set must be as small as possible.

- Must ensure every “good page” gets adequate trust rank, so need make all good pages reachable from seed set by short paths.
Suppose we want to pick a seed set of k pages

PageRank:
- Pick the top k pages by PageRank
- Assume high PageRank pages are close to other highly ranked pages
- We care more about high PageRank “good” pages
Pick the pages with the maximum number of outlinks

Can make it recursive:
- Pick pages that link to pages with many out-links

Formalize as “inverse PageRank”
- Construct graph G' by reversing edges in G
- PageRank in G' is inverse page rank in G
- Pick top k pages by inverse PageRank
In the TrustRank model, we start with good pages and propagate trust.

Complementary view:
What fraction of a page’s PageRank comes from “spam” pages?

In practice, we don’t know all the spam pages, so we need to estimate.
Spam mass estimation

- \(r(p) = \) PageRank of page \(p \)
- \(r^+(p) = \) page rank of \(p \) with teleport into “good” pages only
- Then:
 \[
 r^-(p) = r(p) - r^+(p)
 \]
- Spam mass of \(p = r^-(p)/r(p) \)
For spam mass, we need a large set of “good” pages:
- Need not be as careful about quality of individual pages as with TrustRank

One reasonable approach
- .edu sites
- .gov sites
- .mil sites
Another approach

- Backflow from known spam pages:
 - Course project from last year’s edition of this course
- Still an open area of research...
Reminders:

- Project write-up is due **Mon, Feb 1 midnight**
 - What is the problem you are solving?
 - What data will you use (where will you get it)?
 - How will you do it?
 - What algorithms/techniques will you use?
 - Who will you evaluate, measure success?
 - What do you expect to submit at the end of the quarter?
- Homework is due on **Tue, Feb 2 midnight**