Mining Data Streams (Part 2)

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which elements of stream have keys in S
- Obvious solution: hash table
 - But suppose we don’t have enough memory to store all of S in a hash table
 - e.g., we might be processing millions of filters on the same stream

Applications

- Example: email spam filtering
 - We know 1 billion “good” email addresses
 - If an email comes from one of these, it is NOT spam
 - Publish-subscribe
 - People express interest in certain sets of keywords
 - Determine whether each message matches a user’s interest

First Cut Solution – (1)

- Create a bit array B of m bits, initially all 0’s.
- Choose a hash function h with range $[0,m)$
- Hash each member of S to one of the bits, which is then set to 1
- Hash each element of stream and output only those that hash to a 1

First Cut Solution – (2)

First Cut Solution – (3)

- $|S| = 1$ billion, $|B| = 1GB = 8$ billion bits
- If a string is in S, it surely hashes to a 1, so it always gets through
- Approximately most $1/8$ of the bit array is 1, so about $1/8^{th}$ of the strings not in S get through to the output (*false positives*)
 - Actually, less than $1/8^{th}$, because more than one key might hash to the same bit
Throwing Darts

- If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?
- Targets = bits, darts = hash values

Throwing Darts – (2)

\[
\frac{m}{n} \cdot (1 - \frac{1}{n})^{m/n} = 1 - e^{-m/n}
\]

Throwing Darts – (3)

- Fraction of 1's in array = probability of false positive = \(1 - e^{-m/n} \)
- Example: \(10^9 \) darts, \(8 \times 10^9 \) targets.
 - Fraction of 1's in B = \(1 - e^{-1/8} \) = 0.1175.
 - Compare with our earlier estimate: \(1/8 \) = 0.125.

Bloom Filter

- Say \(|S| = m \), \(|B| = n \)
- Use \(k \) independent hash functions \(h_1, \ldots, h_k \)
- Initialize B to all 0's
- Hash each element \(s \) in \(S \) using each function, and set \(B[h_i(s)] = 1 \) for \(i = 1, \ldots, k \)
- When a stream element with key \(x \) arrives
 - If \(B[h_i(x)] = 1 \) for \(i = 1, \ldots, k \), then declare that \(x \) is in \(S \)
 - Otherwise discard the element

Bloom Filter -- Analysis

- What fraction of bit vector B is 1’s?
 - Throwing \(km \) darts at \(n \) targets
 - So fraction of 1’s is \((1 - e^{-km/n}) \)
- \(k \) independent hash functions
- False positive probability = \((1 - e^{-km/n})^k \)

Bloom Filter – Analysis (2)

- \(m = 1 \) billion, \(n = 8 \) billion
 - \(k = 1: (1 - e^{-1/8}) = 0.1175 \)
 - \(k = 2: (1 - e^{-1/4})^2 = 0.0493 \)
- What happens as we keep increasing \(k \)?
 - “Optimal” value of \(k: n/\ln 2 \)
Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
- Great for pre-processing before more expensive checks
- E.g., Google’s BigTable, Squid web proxy
- Suitable for hardware implementation
- Hash function computations can be parallelized

Counting Distinct Elements

- Problem: a data stream consists of elements chosen from a set of size \(n \). Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?

Using Small Storage

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin* Approach

- Pick a hash function \(h \) that maps each of the \(n \) elements to at least \(\log_2 n \) bits
- For each stream element \(a \), let \(r(a) \) be the number of trailing 0’s in \(h(a) \)
- Record \(R = \) the maximum \(r(a) \) seen
- Estimate = \(2^R \).

* Really based on a variant due to AMS (Alon, Matias, and Szegedy)

Why It Works

- The probability that a given \(h(a) \) ends in at least \(r0's \) is \(2^{-r} \)
- Probability of NOT seeing a tail of length \(r \) among \(m \) elements is \(\left(1 - 2^{-r}\right)^m \)

Prob. All end in fewer than \(r0's \). Prob. a given \(h(a) \) ends in fewer than \(r0's \).
Why It Works — (2)

- Since 2^r is small, prob. of NOT finding a tail of length r is:
 - If $m << 2^r$, tends to 1. So probability of finding a tail of length r tends to 0.
 - If $m >> 2^r$, tends to 0. So probability of finding a tail of length r tends to 1.
- Thus, 2^R will almost always be around m.

Why It Doesn’t Work

- $E(2^R)$ is actually infinite.
 - Probability halves when $R \rightarrow R + 1$, but value doubles.
 - Workaround involves using many hash functions and getting many samples.
- How are samples combined?
 - Average? What if one very large value?
 - Median? All values are a power of 2.

Solution

- Partition your samples into small groups
- Take the average of groups
- Then take the median of the averages

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_i be the number of times value i occurs.
- The k^{th} moment is

Special Cases

- 0^{th} moment = number of distinct elements
 - The problem just considered.
- 1^{st} moment = count of the numbers of elements = length of the stream.
 - Easy to compute.
- 2^{nd} moment = surprise number = a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 distinct values
 - Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 - $\text{Supprise} # = 910$
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 - $\text{Suprise} # = 8,110$.
AMS Method

- Works for all moments; gives an unbiased estimate.
- We’ll just concentrate on 2nd moment.
- Based on calculation of many random variables X.
- Each requires a count in main memory, so number is limited.

One Random Variable (X)

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- Maintain a count c of the number a’s in the stream starting at the chosen time.
- $X = n*(2c-1)$
- Store n once, count of a’s for each X.

Expectation Analysis

\[X = n(2c - 1) \]
\[E[X] = (1/n)\sum_{all \ times} n \ (2c - 1) \]
\[= \sum_{all \ times} (2c - 1) \]
\[= \sum_{a} (1 + 3 + 5 + \ldots + 2m_a - 1) \]
\[= \sum_{a} (m_a)^2 \]

Combining Samples

- Compute as many variables X as can fit in available memory.
- Average them in groups.
- Take median of averages.

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n is a variable – the number of inputs seen so far.

Fixups

1. The variables X have n as a factor – keep n separately; just hold the count in X.
2. Suppose we can only store k counts. We must throw some X’s out as time goes on.
 - Objective: each starting time t is selected with probability k/n.
 - How can we do this?
Exponentially Decaying Windows

- Stream $a_1, a_2, ...$
- Define exponentially decaying window at time t to be: $\sum_{i=1,2,...,t} a_i (1-c)^{t-i}$
- c is a constant, presumably tiny, like 10^{-6} or 10^{-9}.

Applications

- Key use case is when the stream's statistics can vary over time
- Finding the most popular elements “currently”
 - Stream of Amazon items sold
 - Stream of topics mentioned in tweets
 - Stream of music tracks streamed