Association Rules

CS345a: Data Mining
Jure Leskovec and Anand Rajaraman
Stanford University

Slides adapted from lectures by Jeff Ullman
The Market-Basket Model

- A large set of *items*
 - e.g., things sold in a supermarket
- A large set of *baskets*, each of which is a small set of the items
 - e.g., the things one customer buys on one day
- Can be used to model any many-many relationship, not just in the retail setting
- Find “interesting” connections between items
Frequent Itemsets

- Simplest question: Find sets of items that appear together “frequently” in baskets
- **Support** for itemset $I = \text{the number of baskets containing all items in } I$
 - Often expressed as a fraction of the total number of baskets
- Given a **support thresholds**, sets of items that appear in at least s baskets are called **frequent itemsets**
Example: Frequent Itemsets

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

 \[
 B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \\
 B_3 = \{m, b\} \quad B_4 = \{c, j\} \\
 B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \\
 B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \\
 \]

- Frequent itemsets: \{m\}, \{c\}, \{b\}, \{j\},
 \{m,b\}, \{b,c\}, \{c,j\}.
Applications – (1)

- **Items** = products; **baskets** = sets of products someone bought in one trip to the store

- Suppose many people buy beer and diapers together
 - Run a sale on diapers; raise price of beer

- Only useful if many buy diapers & beer
Applications – (2)

- **Baskets** = sentences; **items** = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = Web pages; **items** = words.
 - Co-occurrence of relatively rare words, e.g., “Brad” and “Angelina,” may indicate an interesting relationship
Applications – (3)

- **Baskets** = patients; **items** = drugs and side-effects

- **Baskets** = movies; **items** = Oscar nominations and wins in different categories
 - Does being nominated in certain categories boost win likelihood in other categories?
If-then rules about the contents of baskets.

\[\{i_1, i_2, ..., i_k\} \rightarrow j \] means: “if a basket contains all of \(i_1, ..., i_k\) then it is likely to contain \(j\).”

Confidence of this association rule is the probability of \(j \) given \(l = \{i_1, ..., i_k\}\).
Not all high-confidence rules are interesting

- The rule $X \rightarrow \text{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X)

Interesting rules are those with high positive or negative interest values
Example: Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{m, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- Association rule: \(\{m, b\} \rightarrow c \).
 - Confidence = \(\frac{2}{4} = 0.5 \)
 - Interest = \(0.5 - \frac{4}{8} = 0 \)
Finding Association Rules

- Problem: find all association rules with support $\geq s$ and confidence $\geq c$
 - Note: support of an association rule is the support of the set of items on the left.
- Hard part: finding the frequent itemsets.
 - If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent.”
Computation Model

- Typically, data is kept in flat files rather than in a database system.
 - Stored on disk.
 - Stored basket-by-basket.
 - Expand baskets into pairs, triples, etc. as you read baskets.
 - Use k nested loops to generate all sets of size k.
Example: items are positive integers, and boundaries between baskets are -1.

Item
I
The true cost of mining disk-resident data is usually the number of disk I/O’s.

In practice, association-rule algorithms read the data in passes – all baskets read in turn.

We measure the cost by the number of passes an algorithm takes.
For many frequent-itemset algorithms, main memory is the critical resource.

- As we read baskets, we need to count something, e.g., occurrences of pairs.
- The number of different things we can count is limited by main memory.
- Swapping counts in/out is a disaster (why?)
The hardest problem often turns out to be finding the frequent pairs.
- Often frequent pairs are common, frequent triples are rare.
- Probability of being frequent drops exponentially with size; number of sets grows more slowly with size.
- We’ll concentrate on pairs, then extend to larger sets.
Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair.
 - From each basket of \(n \) items, generate its \(n(n-1)/2 \) pairs by two nested loops

- Fails if \((\#\text{items})^2\) exceeds main memory.
 - \#items can be 100K (Wal-Mart) or 10B (Web pages).
Approach 1: Store triples \([i, j, c]\) where \(\text{count}(i, j) = c\)

- If integers and item ids are 4 bytes, needs approximately 12 bytes for pairs with count \(> 0\)
- Plus some additional overhead for a hashtable

What if most pairs occur, even if infrequently?
Approach 2: Count all pairs

- Number items 1, 2, 3, ...
- Count \{i, j\} only if i < j.

Keep pair counts in lexicographic order:
- \{1,2\}, \{1,3\},..., \{1,n\}, \{2,3\}, \{2,4\},...,\{2,n \}, \{3,4\},...
- Pair \{i, j\} is at position \((i - 1)(n - i/2) + j - i\)

Total number of pairs \(n(n - 1)/2\); total bytes about \(2n^2\)
Comparing approaches

4 bytes per pair

Triangular Matrix

12 per occurring pair

Triples
A two-pass approach called *a-priori* limits the need for main memory.

Key idea: *monotonicity*

- If a set of items appears at least s times, so does every subset.

Contrapositive for pairs: If item i does not appear in s baskets, then no pair including i can appear in s baskets.
Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items

Items that appear at least s times are the frequent items.
Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.

- Requires memory proportional to square of frequent items only (for counts)
- Plus a list of the frequent items (so you know what must be counted).
Picture of A-Priori

- Item counts
- Frequent items

Pass 1

Counts of pairs of frequent items

Pass 2
You can use the triangular matrix method with $n =$ number of frequent items.
- May save space compared with storing triples

Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers.
For each k, we construct two sets of k-sets (sets of size k):

- $C_k = \text{candidate } k$-sets = those that might be frequent sets based on information from the pass for $k - 1$.
- $L_k = \text{the set of truly frequent } k$-sets.
Frequent Itemsets – (1)

- **All items**
 - Count the items
 - First pass
 - Frequent items

- **All pairs of items from \(L_1 \)**
 - Count the pairs
 - Second pass
 - Frequent pairs

- **To be explained**
 - Filter
 - Construct
 - Filter
 - Construct

First pass:
- Count the items from \(C_1 \)
- Filter
- Construct

Second pass:
- Count the pairs from \(L_1 \)
- Filter
- Construct

Frequent items:
- \(C_1 \)
- \(L_1 \)

Frequent pairs:
- \(C_2 \)
- \(L_2 \)

To be explained:
- \(C_3 \)
Frequent Itemsets – (2)

- $C_1 =$ all items
- $L_k =$ members of C_k with support $\geq s$.
- $C_{k+1} =$ $(k + 1)$-sets, each k of which is in L_k.
A-Priori for All Frequent Itemsets

- One pass for each k
- Needs room in main memory to count each candidate k–set
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory.
PCY Algorithm

- Observation: In pass 1 of a-priori, most memory is idle
 - We store only individual item counts
 - Can we use the idle memory to reduce memory required in pass 2?
- Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as will fit in memory
FOR (each basket) {
 FOR (each item in the basket) {
 add 1 to item’s count;
 }
 FOR (each pair of items) {
 hash the pair to a bucket;
 add 1 to the count for that bucket
 }
}
1. For a bucket with total count less than s, none of its pairs can be frequent.
2. A bucket that a frequent pair hashes to is surely frequent.
3. Even without any frequent pair, a bucket can be frequent.

We can surely eliminate all pairs that hash into buckets of Type (1).
PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket is frequent; 0 means it is not.
 - 4-byte integers are replaced by bits, so the bit-vector requires 1/32 of memory.
PCY Algorithm – Pass 2

- Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:
 1. Both \(i \) and \(j \) are frequent items.
 2. The pair \(\{i, j\} \), hashes to a bucket number whose bit in the bit vector is 1.
- Notice all these conditions are necessary for the pair to have a chance of being frequent.
Picture of PCY

- Item counts
 - Hash table
 - Pass 1
- Frequent items
 - Bitmap
 - Counts of candidate pairs
 - Pass 2
Buckets require a few bytes each.

- **Note:** we don’t have to count past s.
- # buckets is O(main-memory size)

On second pass, a table of (item, item, count) triples is essential (why?)

- Hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat a-priori.
Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY

On middle pass, fewer pairs contribute to buckets, so fewer *false positives*—frequent buckets with no frequent pair.
Multistage Picture

- **Item counts**
 - First hash table
 - Pass 1

- **Freq. items**
 - Bitmap 1
 - Second hash table
 - Pass 2

- **Freq. items**
 - Bitmap 1
 - Bitmap 2
 - Counts of candidate pairs
 - Pass 3

Pass 1 → Pass 2 → Pass 3
Count only those pairs \(\{i, j\} \) that satisfy these candidate pair conditions:

1. Both \(i \) and \(j \) are frequent items.
2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1.
3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1.
Multihash

- **Key idea**: use several independent hash tables on the first pass.
- **Risk**: halving the number of buckets doubles the average count. We have to be sure most buckets will still not reach counts.
- If so, we can get a benefit like multistage, but in only 2 passes.
Multihash Picture

- Item counts
 - First hash table
 - Second hash table
- Freq. items
 - Bitmap 1
 - Bitmap 2
- Counts of candidate pairs
- Pass 1
- Pass 2

Pass 1: Compute item counts and hash them into the first hash table.
Pass 2: For each item, hash it into the second hash table and add to the bitmap.

References:
- 413/4/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining
A-Priori, PCY, etc., take k passes to find frequent itemsets of size k.

Other techniques use 2 or fewer passes for all sizes, but may miss some frequent itemsets:

- Random sampling
- SON (Savasere, Omiecinski, and Navathe)
- Toivonen (see textbook)
Random Sampling (1)

- Take a random sample of the market baskets
- Run a-priori or one of its improvements in main memory
 - So we don’t pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match sample size
Random Sampling (2)

- Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass (avoid false positives)

- May miss some frequent itemsets
 - Smaller threshold helps catch more truly frequent itemsets.
SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - Note: we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.
On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.

Key “monotonicity” idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
SON Algorithm – Distributed Version

- SON lends itself to distributed data mining
- Baskets distributed among many nodes
 - Compute frequent itemsets at each node
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates.
SON: Map/Reduce

- Phase 1: Find candidate itemsets
 - Map?
 - Reduce?

- Phase 2: Find true frequent itemsets
 - Map?
 - Reduce?
1. **Maximal Frequent itemsets**: no immediate superset is frequent

2. **Closed itemsets**: no immediate superset has the same count (> 0).
 - Stores not only frequent information, but exact counts.
Example: Maximal/Closed

<table>
<thead>
<tr>
<th>Count</th>
<th>Maximal (s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B 5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C 3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB 4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC 2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC 3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC 2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Frequent, but superset BC also frequent.

Frequent, and its only superset, ABC, not freq.

Superset BC has same count.

Its only superset, ABC, has smaller count.