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The Market-Basket Model

A large set of items

e.g., things sold in a supermarket
A large set of baskets, each of which is a small
set of the items

e.g., the things one customer buys on one day
Can be used to model any many-many

relationship, not just in the retail setting
Find “interesting” connections between items
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Frequent Itemsets

Simplest question: Find sets of items that
appear together “frequently” in baskets
Support for itemset /| =the number of
baskets containing all items in/

Often expressed as a fraction of the total number
of baskets

Given a supportthresholds, sets of items that
appear in at least s baskets are called
frequent itemsets
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Example: Frequent Itemsets

ltems={milk, coke, pepsi, beer, juice}.
Support = 3 baskets.

B, ={m, ¢, b} B, ={m, p, j}
B,={c, j}

{m,b}, {b,C} , {C.}}-
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Applications — (1)

3/4/2010

ltems = products; baskets = sets of products
someone bought in one trip to the store

Suppose many people buy beer and diapers
together
Run a sale on diapers; raise price of beer

Only useful if many buy diapers &beer



Applications — (2)

Baskets = sentences; items = documents
containing those sentences

ltems that appear together too often could
represent plagiarism

Notice items do not have to be “in” baskets

Baskets = Web pages; items = words.

Co-occurrence of relatively rare words, e.g., “Brad”
and “Angelina,” may indicate an interesting
relationship
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Applications — (3)

Baskets = patients; items = drugs and side-
effects

Baskets = movies; items = Oscar nominations
and wins in different categories

Does being nominated in certain categories boost
win likelihood in other categories?

See my blog post on the “Oscar Halo”
(http://datawocky.com/2009/02/oscar-halo-academy-awards-and-the-
matthew-effect.html)
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Assocliation Rules

If-then rules about the contents of baskets.
{i,, I,,...,I,} —jmeans: “if a basket contains all

of iy,...,i, then it is to contain j.”

Confidenceof this association rule is the
probability of j given/ = {i,...,i.}
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Interesting Association Rules

Not all high-confidence rules are interesting

The rule X - milk may have high confidence for
many itemsets X, because milk is just purchased
very often (independent of X)

Interesting rules are those with high positive
or negative interest values
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Example: Confidence and Interest

B, ={m, ¢, b} B, ={m, p, j}
B; = {m, b} B,=1{m, j}

B. = {m, p, b} B,={m, c, b, j}
B.={c, b, j} B, = {b, c}

Association rule:
Confidence =2/4 =0.5
Interest=0.5-4/8 =0
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Finding Association Rules

Problem: find all association rules with
support =s and confidence >c

Note: support of an association rule is the
support of the set of items on the left.

Hard part: finding the frequent itemsets.
If {i,, i5,...,I,} —J has high support and confidence,
then both {i,, i,,...,i,y and{i,, i,,...,i,,j } will be
“frequent.”
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Computation Model

Typically, data is kept in flat files rather than
in a database system.

Stored on disk.

Stored basket-by-basket.

Expand baskets into pairs, triples, etc. as you
read baskets.

Use k nested loops to generate all sets of size k.
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File Organization

Iltem

ltem
ltem Basket 1

ltem .

Item positive integers,
Item Basket 2 and boundaries
ltem between baskets

tem are —1
ltem Basket 3 '

Iltem

ltem

Etc.
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Computation Model - (2)
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The true cost of mining disk-resident data is
usually the number of disk I/O’s

In practice, association-rule algorithms read
the data in passes — all baskets read in turn

We measure the cost by the number of passes
an algorithm takes



Main-Memory Bottleneck

For many frequent-itemset algorithms, main
memory is the critical resource.

As we read baskets, we need to count something,
e.g., occurrences of pairs.

The number of different things we can count is
limited by main memory.

Swapping counts in/out is a disaster (why?)
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Finding Frequent Pairs
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The hardest problem often turns out to be
finding the frequent pairs.

Often frequent pairs are common, frequent
triples are rare.

Probability of being frequent drops
exponentially with size; number of sets grows
more slowly with size.

We’'ll concentrate on pairs, then extend to
larger sets.
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Naive Algorithm

Read file once, counting in main memory the
occurrences of each pair.

From each basket of n items, generate itsn(n-1)/2
pairs by two nested loops

Fails if (#items)? exceeds main memory.

#titems can be 100K (Wal-Mart) or 10B (Web
pages).
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Counting pairs iIn memory

Approach 1: Store triples [i, j, c] where count(i
J)=c
If integers and and item ids are 4 bytes, needs
approximately 12 bytes for pairs with count >0

Plus some additional overhead for a hashtable

What if most pairs occur, even if infrequently?
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Triangular Matrix Approach

Approach 2: Count all pairs
Number items 1,2,3,...
Count {i, j} only ifi<j.
Keep pair counts in lexicographic order:
{1,2}, {1,3},..., {1,n}, {2,3}, {2,4},....{2,n }, {3,4},...
Pair {i, j} is at position (i —1)(n—i/2) +j —i

Total number of pairs n(n —1)/2; total bytes
about 2n?
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Comparing approaches
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A-Priori Algorithm — (1)

A two-pass approach called a-priorilimits the
need for main memory.
Key idea: monotonicity

If a set of items appears at least s times, so does
every subset.

Contrapositive for pairs: If itemi does not
appear in s baskets, then no pair including i
can appear in s baskets.
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A-Priori Algorithm — (2)

Pass 1: Read baskets and count in main
memory the occurrences of each item.

Requires only memory proportional to #items

ltems that appear at least s times are the
frequent items.
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A-Priori Algorithm — (3)

Pass 2: Read baskets again and count in

main memory only those pairs both of

which were found in Pass 1 to be frequent.
Requires memory proportional to square of
frequent items only (for counts)

Plus a list of the frequent items (so you know
what must be counted).
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Picture of A-Priori

ltem counts Frequent items

Counts of
pairs of

frequent
items

Pass 1 Pass 2
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Detail for A-Priori
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You can use the triangular matrix method
with n = number of frequent items.

May save space compared with storing triples
Trick:re-number frequent items 1,2,... and

keep a table relating new numbers to
original item numbers.
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Frequent Triples, Etc.

For each k, we construct two sets ofk-sets
(sets of size k ):

C.= candidatek-sets = those that might be frequent
setsbased on information from the pass for k —1.

L, = the set of truly frequent k -sets.
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Frequent Itemsets — (1)

Count AII_pairs
AII the items of items
items from L,

| |

Count To be

the pairs explained

C, | Filter L, Construct

—> C2—>

1;

First
pass

Frequent
items

/ /

Filter L, —* Construct — C, —*

|

Second
pass

Frequent
pairs
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Frequent Itemsets — (2)

C, = all items
L .= members of C, with support =s.

C..; = (k +1) -sets, each k of which isin L,.
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A-Priori for All Frequent Itemsets

One pass for each k

Needs room in main memory to count each
candidate k—set

For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most
memory.
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PCY Algorithm

Observation: In pass 1 of a-priori, most
memory is idle

We store only individual item counts

Can we use the idle memory to reduce memory
required in pass 27
Pass 1 of PCY: In addition to item counts,
maintain a hash table with as many buckets as
will fit in memory
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PCY Algorithm — First Pass

FOR (each basket) {

FOR (each 1tem In the basket)
add 1 to 1tem’s count;

FOR (each pair of 1tems) {
hash the pailr to a bucket;
add 1 to the count for that

bucket
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Observations About Buckets

For a bucket with total count less than s,
none of its pairs can be frequent

A bucket that a frequent pair hashes to is
surely frequent

Even without any frequent pair, a bucket can
be frequent

We can surely eliminate all pairs that hash
into buckets of Type (1)
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PCY Algorithm — Between Passes

Replace the buckets by a bit-vector:

1 means the bucket is frequent; 0 means it is not.
4-byte integers are replaced by bits, so the bit-
vector requires 1/32 of memory.
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PCY Algorithm — Pass 2

Count all pairs {j, j} that meet the conditions
for being a candidate pair:
Bothi andj are frequent items.

The pair {i, j }, hashes to a bucket number whose
bit in the bit vector is 1.

Notice all these conditions are necessary for
the pair to have a chance of being frequent.
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Picture of PCY

ltem counts Frequent items
Bitmap
Hash
table Counts of
candidate
pairs
Pass 1 Pass 2
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Memory Detalls

Buckets require a few bytes each.
Note: we don’t have to count past s.
# buckets is O(main-memory size)

On second pass, a table of (item, item, count)
triples is essential (why?)

Hash table must eliminate approx. 2/3 of the
candidate pairs for PCY to beat a-priori.
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Multistage Algorithm

Key idea: After Pass 1 of PCY, rehash only
those pairs that qualify for Pass 2 of PCY

On middle pass, fewer pairs contribute to
buckets, so fewer false positives—frequent
buckets with no frequent pair.
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Multistage Picture

ltem counts Freq. items Freqg. items
Bitmap 1 Bitmap 1
First Second Bitmap 2
hash table hash table
Counts of
candidate
pairs

Pass 1 Pass 2 Pass 3
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Multistage — Pass 3

Count only those pairs {i, j } that satisfy
these candidate pair conditions:

Bothi andj are frequent items.

Using the first hash function, the pair hashes
to a bucket whose bit in the first bit-vector is

1.

Using the second hash function, the pair
hashes to a bucket whose bit in the second bit-
vector is 1.
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Multihash
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Key idea: use several independent hash
tables on the first pass.

Risk: halving the number of buckets
doubles the average count. We have to be
sure most buckets will still not reach count
S.

If so, we can get a benefit like multistage,

but in only 2 passes.



Multihash Picture

ltem counts Freg. items
Bitmap 1
First hash _
table Bitmap 2
Second candiate
hash table )
pairs
Pass 1 Pass 2

3/4/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 41



Frequent Itemsets In < 2 Passes

A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k.
Other techniques use 2 or fewer passes for

all sizes, but may miss some frequent
itemsets

Random sampling

SON (Savasere, Omiecinski, and Navathe)
Toivonen (see textbook)
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Random Sampling (1)

Take a random sample of the market baskets

Run a-priori or one of its improvementsin
main memory

So we don’t pay for disk |/O each time we
increase the size of itemsets

Reduce support threshold proportionally to match
sample size
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Random Sampling (2)
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Optionally, verify that the candidate pairs
are truly frequent in the entire data set by
a second pass (avoid false positives)

May miss some frequent itemsets

Smaller threshold helps catch more truly
frequent itemsets.



SON Algorithm — (1)

Repeatedly read small subsets of the baskets
into main memory and run an in-memory
algorithm to find all frequent itemsets

Note: we are not sampling, but processing the
entire file in memory-sized chunks

An itemset becomes a candidate if it is found
to be frequent in any one or more subsets of

the baskets.
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SON Algorithm — (2)
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On a second pass, count all the candidate
itemsets and determine which are frequent in
the entire set

Key “monotonicity” idea: an itemset cannot
be frequent in the entire set of baskets unless
it is frequent in at least one subset.



SON Algorithm - Distributed Version

SON lends itself to distributed data mining

Baskets distributed among many nodes

Compute frequent itemsets at each node
Distribute candidates to all nodes
Accumulate the counts of all candidates.
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SON: Map/Reduce

Phase 1: Find candidate itemsets
Map?
Reduce?

Phase 2: Find true frequent itemsets

Map?
Reduce?
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Compacting the Output

Maximal Frequent itemsets: no immediate
superset is frequent

Closed itemsets: no immediate superset has
the same count (> 0).

Stores not only frequent information, but exact
counts.

3/4/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 49



Example: Maximal/Closed

Frequent, but
superset BC

Count Maximal (s=3) Closed  alsofrequent.

A 4 No
Frequent, and
B 5 No Yes its only superset,
C 3 No ABC, not freq.
Superset BC
AB 4 Yes YES\ has same count.
AC 2 No No Its only super-
BC 3 Yes Yes . seLABC, has
smaller count.
ABC 2 No Yes

3/4/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 50



