Recovery with Aries

Locking

Goal: A protocol that to ensure that any schedule
produced using the protocol is serializable.

Lock and Unlock take DB resources as arguments:
DB, a relation, tuple, etc.

TX locks X before an action on X is taken, and then unlocks after
the action is taken.

Two-phase Locking (2PL): TX locks X before an
action on X is taken. Never requests a lock after
releasing one or more locks.

High-level comments on Paper

Paper has incredible amounts of detail: latches,
conditional locking, lock durations, history of
shadow paging, etc.

I’'m focused on recovery in this lecture...

Motivation

* Atomicity:
— Transactions may abort (“Rollback”).
* Durability:
— What if DBMS stops running? (Causes?)

» Desired Behavior after system restarts:
- T1, T2 & T3 should be durable. crash!
- T4 & T5 should be aborted (effects 11 : [
not seen). 12 ’ |
T3 I
T4 [
partial rollbacks. —_—

High-level Goals

* Always be able to
1. Back out effects of uncommitted TXs

2. Recover results of committed TX

3. Get consistent snapshot of the DB

Achieving the Goal

 Some Concurrency Control Mechanism
(locking)

* DO-UNDO-REDO (more later)

* WAL

Review of Locking

Review: The ACID properties

» A tomicity: All actions in the Xact happen, or none happen.

» (C onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

e | solation: Execution of one Xact is isolated from that of other
Xacts.

« D urability: If a Xact commits, its effects persist.

* The Recovery Manager guarantees Atomicity & Durability.

Assumptions

* Concurrency control is in effect.
— Strict 2PL, in particular.

* Updates are happening “in place”.
— i.e. data is overwritten on (deleted from) the disk.

Handling the Buffer Pool

* Force every write to disk?
— Poor response time. No Steal Steal
— But provides durability.

* Steal buffer-pool frames
from uncommited Xacts?

e
— If not, poor throughput. No Force Desired\

— If so, how can we ensure
atomicity?

Force| Trivial

More on Steal and Force

STEAL (why enforcing Atomicity is hard)
— To steal frame F: Current page in F (say P) is
written to disk; some Xact holds lock on P.

 What if the Xact with the lock on P aborts?

 Must remember the old value of P at steal time (to
support UNDQOing the write to page P).

NO FORCE (why enforcing Durability is hard)

— What if system crashes before a modified page is
written to disk?

— Write as little as possible, in a convenient place, at
commit time, to support REDOing modifications.

Write-Ahead Logging (WAL)

The Write-Ahead Logging Protocol:

1. Must force log record for an update before
corresponding data page goes to disk.

2. Must write all log records for a Xact before
commit.

#1 guarantees Atomicity.
#2 guarantees Durability.

Recovery

Three Critical Recovery Questions

. What kind of failures do we protect against?

. What kind of operations on the data do we
support?

. What are the characteristics of our available
resources?

1. Types of Failures

Action Failure: bad parameters

Transaction Failure: Deadlock, abort, local errors

System Failure: Hardware Crash, Panic

Media Failure: Disk is corrupted and destroyed.

|deally, all of them!

Today, some also worry
at the data center level!

2. Operations and Programming
Model

* Fine-grained Read and Writes
* Increment/Decrement: why?

» Explicit Rollback/Partial Rollback/Nested
Rollback

ARIES Supports this, but we will return
to it next time.

3. Resources: Storage Types

Volatile Storage (buffers in main memory)
— Lost when a crash occurs

Non-Volatile Storage: survives a crash (more
reliable than volatile storage)

Stable Storage: “never” fails.

Non-Volatile Offline-Storage: Highly reliable
stuff (geographically diverse backup, tapes)

We use different storage types to store data that
will guard against a set of failures.

Aries Main ldeas

Recovering From a Crash: Aries

 Main Idea: Repeat history using the log. 3 Phases.

1. Analysis: Find the earliest transactions that
were active at the time of the crash

2. Redo: Put the DB back into the state at the time
of the crash by redoing operations in the log.

3. Undo: Abort those TXs still in flight!

Some more details!

Example Execution History

Log Sequence Number

Analysis: Identify dirty pages LSN

in the buffer pool at time of 10 Update: T1 writes P5
crash and active TXs

20 Update: T2 writes P3
Redo: Redo all the writes 30 T2 Commit
(even if they didn’t go to disk!) 40 T2 End
Undo: Which transactions 50 Update: T3 writes P1

need to be aborted?

60 Update: T3 writes P3

CRASH

Recovering From a Crash

* Main idea in Aries: “Repeating History”

— Analysis: Scan the log forward (from the most recent
checkpoint) to identify all Xacts that were active, and all
dirty pages in the buffer pool at the time of the crash.

— Redo: Redoes all updates to dirty pages in the buffer pool,
as needed, to ensure that all logged updates are in fact
carried out and written to disk.

— Undo: The writes of all Xacts that were active at the crash
are undone (by restoring the before value of the update,
which is in the log record for the update), working
backwards in the log. (Some care must be taken to handle
the case of a crash occurring during the recovery process!)

Outline for this Section

* The Main Characters: logs, DPTs, Xact tables,
Checkpoints

e How does Abort work? Commit?

* The big, awesome, messy recovery

NB: We will start with
physical UNDO/REDO.

Basic Idea: Logging

 Record REDO and UNDO for every update, in a
log.
— Sequential writes to log (put it on a separate disk).
— Minimal info (diff) written to log, so multiple updates
fitin a single log page.
* Log: An ordered list of REDO/UNDO actions

— Log record contains:
<XID, pagelD, offset, length, old data, new data>

— and additional control info (which we’ll see soon).

WALE | qump o]

the LOg LSNs pageLSNs

[zzllzzllzszllzrz]zr

RAM
flushed LSN

Each log record has a Log Sequence Number (LSN).

— LSNs is uniqgue and always increasing.

Log records

flushed to disk

Each data page contains a pageLSN.
— The LSN of the most recent log record

for an update to that page.

System keeps track of flushedLSN.

— The max LSN flushed so far.
WAL: Before a page is written,
— pagelSN = flushedLSN

pageLSN 7

=

_

“Log tail”
in RAM

Log Records

LogRecord fields:

prevLSN

XID

type

/ pagelD

update | length
records § Offset
only before-image

\ after-image

Possible log record types:

Update
Commit
Abort

End (signifies end of
commit or abort)

Compensation Log
Records (CLRs)

— for UNDO actions

Other Log-Related State

* Transaction Table:
— One entry per active Xact.

— Contains XID, status (running/committed/
aborted), and lastLSN.

* Dirty Page Table:
— One entry per dirty page in buffer pool.

— Contains recLSN -- the LSN of the log record
which first caused the page to be dirty.

This is the first record which may have to be redone

Normal Execution of an Xact

e Series of reads & writes, followed by commit
or abort.

— We will assume that write is atomic on disk.

e Strict 2PL. Are disk-writes atomic in practice?

STEAL, NO-FORCE buffer management
with Write-Ahead Logging.

The Big Picture:
What's Stored Where

u Rav
LogRecords Xact Table
prevLSN Data pages lastLSN
i(ID each status
g;; elD with a
length pageLSN Dirty Page Table
offset master record recLSN
before-image
after-image flushedLSN

Checkpointing

* Periodically, the DBMS creates a checkpoint to minimize
the time taken to recover

* Log for Checkpoint
— begin_checkpoint record: Indicates when chkpt began.
— end_checkpoint record: Contains current Xact table and

dirty page table. This is a fuzzy checkpoint’:

e Other Xacts continue to run; so these tables accurate only as of the
time of the begin_checkpoint record.

* No attempt to force dirty pages to disk; effectiveness of checkpoint
limited by oldest unwritten change to a dirty page. (So it’s a good
idea to periodically flush dirty pages to disk!)

— Store LSN of chkpt record in a safe place (master record).

Is this enough to make sure recovery is fast?
(Think: Hot Pages -> lots of log records...)

End of Characters,
Beginning of Abort/Commit

Simple Transaction Abort

* For now, consider an explicit abort of a Xact.
— No crash involved.

* |dea: “play back” the log in reverse order,
UNDOINg updates.
— Get |lastLSN of Xact from Xact table.

— Can follow chain of log records backward via the
prevLSN field.

— Before starting UNDO, write an Abort log record.
* For recovering from crash during UNDO!

© N
Abort, cont. S oo

* To perform unpo, must have a lock on data!
— No problem! Why?
* Before restoring old value of a page, write a CLR:

— You continue logging while you UNDO!!

— CLR has one extra field: undonextLSN

* Points to the next LSN to undo (i.e. the prevLSN of the record
we’re currently undoing).

— CLRs never UNDOne
e Possibly REDOne (for atomicity)

* At end of unpo, write an “end” log record.

Transaction Commit

Write commit record to log and force write the
log tail
All log records up to Xact’s lastLSN are flushed.

— Guarantees that flushedLSN = lastLSN.

— Note that log flushes are sequential, synchronous
writes to disk.

— Many log records per log page.

Commit() returns. Transaction is committed
once commit record is on

Write end record to log. stable storage

Crash Recovery: Aries.

Crash Recovery: Big Picture

Oldest log rec. | :
of Xact active |+ - Start from a checkpoint
at crash : (found via master record).
Smallest - Need to:
recLSN in : - Figure out which Xacts committed
dirl'y page . since checkpoint, which failed
table (Analysis). |
- REDO all actions.
¢ (repeat history)
Last Check - UNDO effects of failed Xacts.
Point

CRASH

Recovery: Analysis

Goals:

1. Determine the pointin the log from which to
start REDO

2. Determine a superset of the pages that are dirty

at the time of the crash
Avoids unnecessary 10.

3. ldentifies transactions that were “in
flight” (losers). Why?

Recovery: The Analysis Phase

* Reconstruct state at checkpoint.
— via end_checkpoint record.

e Scan log forward from checkpoint.
— End record: Remove Xact from Xact table.

— Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

— REDOable record: If P not in Dirty Page Table,
* Then, add P to D.P.T., set its recLSN=LSN.

DPT is a superset of all dirty pages.
Where does the slop come from?

Recovery: The REDO Phase

 We repeat history to reconstruct state at crash:

— Reapply all updates (even of aborted Xacts!), redo
CLRs.

* To REDO an action:
— Reapply logged action.
— Set pagelSN to LSN. No additional logging!

If you remember nothing else about Aries:
Remember repeating history.

Recovery: The REDO Phase

* firstLSN = min recLSN in DPT.

e Scan Forward from here.

* For each cLr or update log rec LSN, Repo the
action unless:

1. Affected page is not in the Dirty Page Table, or

2. Affected pageisin D.P.T., but has recLSN > LSN, or
3. pagelLSN (on disk) = LSN.

Which checks require 107

recLSN in DPT “First LSN that dirtied this page”

Recovery: The UNDO Phase

ToUndo={/ | [alastLSN of a “loser” Xact}

Repeat:
— Choose largest LSN among ToUndo.
— If this LSN is a CLR and undonextLSN==NULL

 Write an End record for this Xact.

— If this LSN is a CLR, and undonextLSN = NULL
 Add undonextLSN to ToUndo

— Else this LSN is an update. Undo the update, write
a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Example of Recovery

[z220l szl lz2]l 1l 22] 27

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

LSN

00
05
10
20
30
40
45
50
60

LOG

-'— begin_checkpoint
=~ end_checkpoint
—~ update: T1 writes P5

prevLSNs
"‘ update T2 writes 3

s
s
s
wst®
....
“““““ .
. .

*
.
* *
* *
. *
. .
\d .
* .
* *
. .
* .
. .
. .
\d .
o*

— Tlabort« — .\ .-
~ CLR: Un% TILSN10 |,

+T1End —

"‘ update: T3 writes P1
—~ update: T2 writes P5
> CRASH, RESTART

18.6.3 in Cow book Walks through this example

Example: Crash During Restart!

[z220l szl lz2]l 1l 22] 27

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

LSN LOG
00,05 —'— begin_checkpoint, end_checkpoint
10 — update: T1 writes P5
20 — update T2 writes P3 undonextL SN
30 — T1 abort
40,45 - CLR: Undo T1 LSN 10, T1 End _
50 —'— update: T3 writes P1 "
60 — update: T2 writes P5
3 CRASH, RESTART
70 — CLR: Undo T2 LSN 60
80,85 — CLR: Undo T3 LSN 50, T3 end
> CRASH, RESTART
90 —~ CLR: Undo T2 LSN 20, T2 end

Additional Crash Issues

 What happens if system crashes during
Analysis? During REDO?

* How do you limit the amount of work in repo?

— Flush asynchronously in the background.
— Watch “hot spots”!

e How do you limit the amount of work in unpo?
— Avoid long-running Xacts.

Summary of Logging/Recovery

Recovery Manager guarantees Atomicity &
Durability.

Use WAL to allow sTeaL/No-FORCE W/0 sacrificing
correctness.

LSNs identify log records; linked into

backwards chains per transaction (via
prevLSN).

pagelLSN allows comparison of data page and
log records.

Summary, Cont.

Checkpointing: A quick way to limit the
amount of Iog to scan on recovery.
Recovery works in 3 phases:

— Analysis: Forward from checkpoint.

— Redo: Forward from oldest recLSN.

— Undo: Backward from end to first LSN of oldest
Xact alive at crash.

Upon Undo, write CLRs.
Redo “repeats history”: Simplifies the logic!

