B+ Review



B+ Tree: Most Widely Used Index

* Insert/delete at log ; N cost; keep tree height-
balanced. (F =fanout, N = # leaf pages)

 Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

e Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")



Example B+ Tree

* Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

 Search for 5*, 15%, all data entries >= 24* ...

Root \

w Based on the search for 15%, we know it is not in the tree!



Inserting a Data Entry into a B+ Tree

 Find correct leaf L.

e Put data entry onto L.
— If L has enough space, done!

— Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

* This can happen recursively

— To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

e Splits “grow” tree; root split increases height.
— Tree growth: gets wider or one level taller at top.




Inserting 8* into Example B+ Tree

* Observe how s
minimum 1
occupancy is — \

guaranteed in
both leaf and
index pg splits.

* Note difference
between copy-up
and push-up; be -

sure you -
understand the \
reasons for this.




Example B+ Tree

 We're going to insert 8.

Root \

13 17 24 30

2% | 3* | 5 | 7* 14*| 16* 19%| 20* | 22* 24~ | 27* | 29* 33*| 34*| 38* | 39*

w Based on the search for 15%, we know it is not in the tree!



Example B+ Tree After Inserting 8*
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“* Notice that root was split, leading to increase in height.

“* In this example, we can avoid split by re-distributing

entries; however, this is usually not done in practice.




Deleting a Data Entry from a B+ Tree

Start at root, find leaf L where entry belongs.

Remove the entry.
— If Lis at least half-full, done!

— If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent node with
same parentas L).

* If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

Merge could propagate to root, decreasing height.



Delete



Example B+ Tree After Inserting 8*

Roo&
17
5 13 24 30
3 5| 7*| 8* 14*]16* 194 20* 22* 24*| 27*(29* 33*| 34*| 38*( 39*

“* We're going to delete 19 and 20




Example Tree After (Inserting 8%,
Then) Deleting 19* and 20* ...
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° Delel—ing 19* IS easy. Next, we delete 24

* Deleting 20* is done with re-distribution.
Notice how middle key is copied up.

221 247 27| 29* 33*| 34* 38*| 39*




... And Then Deleting 24*
\\\\\\\\\\\\ﬁk

* Must merge.

30

* Observe toss’ of /
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index entry (on right), 22| 277 | 20° v | a4 |38 | 30"

and pull down’ of

index entry (below).

RON
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2* |3 54 7| 8 14* [ 16* 22* | 27*| 29* 33* | 34* | 38* 39"




Example of Non-leaf Re-distribution

* Tree is shown below during deletion of 24*.
(What could be a possible initial tree?)

* |n contrast to previous example, can re-
distribute entry from left child of root to right

child. Roat ™\
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After Re-distribution

* Entries are re-distributed by pushing through’
the splitting entry in the parent node.

* |t suffices to re-distribute index entry with key
20; we've re-distributed 17 as well
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B+ Concurrency



Model

* We consider page lock(x)/unlock(x) of pages
(only for writes!)

 We copy into our memory and then atomically
update pages.



, Simple Approach
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e P1 searches for 15

e P2inserts 9



After the Insertion
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P1 searches for 15

P2 inserts 9

P1 Finds no 15!

How could we fix this?




B-Link Trees



Two important Conventions

e Search for B-link trees root to leaf, left-to-right
in nodes

* |nsertions for B-link trees proceed bottom-up.



Internal Nodes

e Parameter d = the degree

Internal Node has

s >=d and <= 2d keys
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/
Keys k < 30

l
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Keye =520

Keys 30<=k<120 Keys 120<=k<240

Add right pointers.

We add a High key

Idea: If we get to this page, looking for
300. What can we conclude happened?




Valid Trees & Safe Nodes

* A node may not have a parent node, but it
must have a left twin.

 We introduce the right links before the
parent.

* A node is safe if it has [k,2k-1] pointers.



Scannode

scannode(u, A): examine the tree node in A for
value u and return the appropriate pointer
from A.

Appropriate pointer may be the right pointer.




Searching for v

current = root;
A = get(current);
while (current is not a leaf) {

current = scannode(v, A); Find the leaf w/ v

A = get(current);}
while ((t = scannode(v,A)) == link pointer of A) {

current = t;

Find the leaf w/ v

A = get(current);}
Return (visin A) ? success : failure;

Only modify scannode — No locking?!?



Insert



High Key Omitted

Approach

Revised
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e P1 searches for 15

e P2inserts 9



Revised Approach: Build new page

15
P2 l

R 10 12 15—

e P1 searches for 15
e P2inserts 9

12 15




Revised Approach: Build new page

115\

3 9 10

e P1 searches for 15
e P2inserts 9

12 15

How did P1 know
to continue?




Start Insert

initialize stack; current = root; Keep a stack of the
rightmost node we
A = get(current); ®

visited at each level:
while (current is not a leaf) {
t = current;
current = scannode(v,A);
if (current not link pointer in A)
push t;
A = get(current);}



A subroutine: move_right

While t = scannode(v,A) is a link pointer of A do
Lock(t)
UnIOCk(Current) How many locks held

Current =t here?

A = get(current);

end

The move_right procedure scans right
across the leaves with lock coupling.



Easy case:

Dolnsert:

if Ais safe {
insert new key/ptr pair on A;
put(A, current);
unlock(current);



Fun Case: Must split

u = allocate(1 new page for B);

redistribute A over Aand B ;

y = max value on A now;

make high key of B equal old high key of A;
make right-link of B equal old right-link of A;
make high key of A equal y;

make right-link of A point to B;



Insert

put (B, u);
put (A, current);
oldnode = current;

new key/ptr pair = (y, u); // high key of new page,
new page

current = pop(stack);
lock(current); A = get(current);

move_right(); —_ may have 3 locks: oldnode, and
unlock(oldnode) two at the parent level while

goto Doinsertion; moving right



Deadlock Free



Total Order < on Nodes

Consider pages a,b define a total order <
1. a<bifbisclosertothe root than a (different
neight)

2. If aand b are at the same height, then a < b if
0 is reachable.

“Order is bottom-up”

Observation: Insert process only puts down locks
satisfying this order. Why is this true?




Deadlock Free

Since the locks are placed by every process in a
total order, there can be no deadlock. Why?

Is it possible to get the cycle:
T1(A) T2(B) T1(B) T2(A)?




Tree Modification



Tree Modifications

Thm: All operations correctly modify the tree
structure.

Observation 1: put(B,u) and put(A, current) are one operation
(since put(B,u) doesn’t change tree. Proof by pictures (again).




Revised Approach: Build new page
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e P1 searches for 15
e P2inserts 9

12 15




Revised Approach: Build new page

115\

3 9 10

e P1 searches for 15
e P2inserts 9

12 15

How did P1 know
to continue?




Correct Interaction of
Readers and Writers



Correct Interaction

Thm: Actions of an insertion process do not impair
the correctness of the actions of other processes.




Type 1: No split

115\

8 1<) 16 15

 P1 searches for 15 P2 reads the page.

* P2inserts 9 What schedule is this?
Why can’t P1,P2 conflict again?

What if P2 reads after P17



Type 2: Split. insert into left Node



Type 2: Split. Insert LHS.

15

.
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e P1searches for 8
e P2inserts 9

Notice that P1 would have
followed 9s pointer!

é
12 15 /

How will P1 find 8?



Livelock



Livelock problem

PR

Poor P1 never gets its value!
P1is livelocked!




Chaining Example



Can we get down below 3 locks?

Consider the Alternative Protocol
(without lock coupling)

read A;
. _ Large # of inserts. A splits
find out that there is room; and after there is room!

lock and re-read A; What prevents this in Blink?
find there is still room, and insert 9

unlock A;

5 6 12 15




Further Reading

* Recent HP Tech Report is great source

(Graefe)
http://www.hpl.hp.com/techreports/2010/
HPL-2010-9.pdf
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