B+ Review

B+ Tree: Most Widely Used Index

* Insert/delete at log ; N cost; keep tree height-
balanced. (F =fanout, N = # leaf pages)

 Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

e Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")

Example B+ Tree

* Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

 Search for 5*, 15%, all data entries >= 24* ...

Root \

w Based on the search for 15%, we know it is not in the tree!

Inserting a Data Entry into a B+ Tree

 Find correct leaf L.

e Put data entry onto L.
— If L has enough space, done!

— Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

* This can happen recursively

— To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

e Splits “grow” tree; root split increases height.
— Tree growth: gets wider or one level taller at top.

Inserting 8* into Example B+ Tree

* Observe how s
minimum 1
occupancy is — \

guaranteed in
both leaf and
index pg splits.

* Note difference
between copy-up
and push-up; be -

sure you -
understand the \
reasons for this.

Example B+ Tree

 We're going to insert 8.

Root \

13 17 24 30

2% | 3* | 5 | 7* 14*| 16* 19%| 20* | 22* 24~ | 27* | 29* 33*| 34*| 38* | 39*

w Based on the search for 15%, we know it is not in the tree!

Example B+ Tree After Inserting 8*

Roo&

17

/'

5 13

r\

\ \

24

30

p,

T

* 3 5| 7

, \ B
* *

x&
14*(16*

8*

19

20"

22*

24*

27*

29*

33*

34*

38*

39*

“* Notice that root was split, leading to increase in height.

“* In this example, we can avoid split by re-distributing

entries; however, this is usually not done in practice.

Deleting a Data Entry from a B+ Tree

Start at root, find leaf L where entry belongs.

Remove the entry.
— If Lis at least half-full, done!

— If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent node with
same parentas L).

* If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

Merge could propagate to root, decreasing height.

Delete

Example B+ Tree After Inserting 8*

Roo&
17
5 13 24 30
3 5| 7*| 8* 14*]16* 194 20* 22* 24*| 27*(29* 33*| 34*| 38*(39*

“* We're going to delete 19 and 20

Example Tree After (Inserting 8%,
Then) Deleting 19* and 20* ...

ROON

17
27 30

14*| 16*

5

13
/, \\\
* 7*

8*

* 3* ?5

° Delel—ing 19* IS easy. Next, we delete 24

* Deleting 20* is done with re-distribution.
Notice how middle key is copied up.

221 247 27| 29* 33*| 34* 38*| 39*

... And Then Deleting 24*
\\\\\\\\\\\\ﬁk

* Must merge.

30

* Observe toss’ of /

. . ¥~ A ¥

index entry (on right), 22| 277 | 20° v | a4 |38 | 30"

and pull down’ of

index entry (below).

RON
5 13 17 30

2* |3 54 7| 8 14* [16* 22* | 27*| 29* 33* | 34* | 38* 39"

Example of Non-leaf Re-distribution

* Tree is shown below during deletion of 24*.
(What could be a possible initial tree?)

* |n contrast to previous example, can re-
distribute entry from left child of root to right

child. Roat ™\
/’

5 13 (| 17 20

30
5 7¢| 8* 14* 16% 171187 20% 217 224 27129

L A | N \ N
/ N | /\A\AXQ K /\\&
* ! 3313493

8% 39"

After Re-distribution

* Entries are re-distributed by pushing through’
the splitting entry in the parent node.

* |t suffices to re-distribute index entry with key
20; we've re-distributed 17 as well

ROCNA

17

Za

22

30

18

20%

21%

22%

277

297

33*

34*

38*

39*

B+ Concurrency

Model

* We consider page lock(x)/unlock(x) of pages
(only for writes!)

 We copy into our memory and then atomically
update pages.

, Simple Approach

P

15

)

P2

h 4

P2

3

10

12

15

e P1 searches for 15

e P2inserts 9

After the Insertion

10

15

\

P2 l

3 9

10

P2

12

15

P1 searches for 15

P2 inserts 9

P1 Finds no 15!

How could we fix this?

B-Link Trees

Two important Conventions

e Search for B-link trees root to leaf, left-to-right
in nodes

* |nsertions for B-link trees proceed bottom-up.

Internal Nodes

e Parameter d = the degree

Internal Node has

s >=d and <= 2d keys

30

120

240

280

/
Keys k < 30

l

N\

Keye =520

Keys 30<=k<120 Keys 120<=k<240

Add right pointers.

We add a High key

Idea: If we get to this page, looking for
300. What can we conclude happened?

Valid Trees & Safe Nodes

* A node may not have a parent node, but it
must have a left twin.

 We introduce the right links before the
parent.

* A node is safe if it has [k,2k-1] pointers.

Scannode

scannode(u, A): examine the tree node in A for
value u and return the appropriate pointer
from A.

Appropriate pointer may be the right pointer.

Searching for v

current = root;
A = get(current);
while (current is not a leaf) {

current = scannode(v, A); Find the leaf w/ v

A = get(current);}
while ((t = scannode(v,A)) == link pointer of A) {

current = t;

Find the leaf w/ v

A = get(current);}
Return (visin A) ? success : failure;

Only modify scannode — No locking?!?

Insert

High Key Omitted

Approach

Revised
P2 |

15

)

P2

h 4

P2

3

10

12

15 [r—

e P1 searches for 15

e P2inserts 9

Revised Approach: Build new page

15
P2 l

R 10 12 15—

e P1 searches for 15
e P2inserts 9

12 15

Revised Approach: Build new page

115\

3 9 10

e P1 searches for 15
e P2inserts 9

12 15

How did P1 know
to continue?

Start Insert

initialize stack; current = root; Keep a stack of the
rightmost node we
A = get(current); ®

visited at each level:
while (current is not a leaf) {
t = current;
current = scannode(v,A);
if (current not link pointer in A)
push t;
A = get(current);}

A subroutine: move_right

While t = scannode(v,A) is a link pointer of A do
Lock(t)
UnIOCk(Current) How many locks held

Current =t here?

A = get(current);

end

The move_right procedure scans right
across the leaves with lock coupling.

Easy case:

Dolnsert:

if Ais safe {
insert new key/ptr pair on A;
put(A, current);
unlock(current);

Fun Case: Must split

u = allocate(1 new page for B);

redistribute A over Aand B ;

y = max value on A now;

make high key of B equal old high key of A;
make right-link of B equal old right-link of A;
make high key of A equal y;

make right-link of A point to B;

Insert

put (B, u);
put (A, current);
oldnode = current;

new key/ptr pair = (y, u); // high key of new page,
new page

current = pop(stack);
lock(current); A = get(current);

move_right(); —_ may have 3 locks: oldnode, and
unlock(oldnode) two at the parent level while

goto Doinsertion; moving right

Deadlock Free

Total Order < on Nodes

Consider pages a,b define a total order <
1. a<bifbisclosertothe root than a (different
neight)

2. If aand b are at the same height, then a < b if
0 is reachable.

“Order is bottom-up”

Observation: Insert process only puts down locks
satisfying this order. Why is this true?

Deadlock Free

Since the locks are placed by every process in a
total order, there can be no deadlock. Why?

Is it possible to get the cycle:
T1(A) T2(B) T1(B) T2(A)?

Tree Modification

Tree Modifications

Thm: All operations correctly modify the tree
structure.

Observation 1: put(B,u) and put(A, current) are one operation
(since put(B,u) doesn’t change tree. Proof by pictures (again).

Revised Approach: Build new page

15
P2 l

R 10 12 15—

e P1 searches for 15
e P2inserts 9

12 15

Revised Approach: Build new page

115\

3 9 10

e P1 searches for 15
e P2inserts 9

12 15

How did P1 know
to continue?

Correct Interaction of
Readers and Writers

Correct Interaction

Thm: Actions of an insertion process do not impair
the correctness of the actions of other processes.

Type 1: No split

115\

8 1<) 16 15

 P1 searches for 15 P2 reads the page.

* P2inserts 9 What schedule is this?
Why can’t P1,P2 conflict again?

What if P2 reads after P17

Type 2: Split. insert into left Node

Type 2: Split. Insert LHS.

15

.

7 10

12

15 fr—

e P1searches for 8
e P2inserts 9

Notice that P1 would have
followed 9s pointer!

é
12 15 /

How will P1 find 8?

Livelock

Livelock problem

PR

Poor P1 never gets its value!
P1is livelocked!

Chaining Example

Can we get down below 3 locks?

Consider the Alternative Protocol
(without lock coupling)

read A;
. _ Large # of inserts. A splits
find out that there is room; and after there is room!

lock and re-read A; What prevents this in Blink?
find there is still room, and insert 9

unlock A;

5 6 12 15

Further Reading

* Recent HP Tech Report is great source

(Graefe)
http://www.hpl.hp.com/techreports/2010/
HPL-2010-9.pdf

. i ey :
EthlgrScIe le’n@cﬁgs%%t?grl]as Bczéulwil High-Concurrency
Locking in R-Trees. VLDB 1995: 134-145
Marcel Kornacker, C. Mohan, Joseph M. Hellerstein:

Concurrency and Recovery in Generalized Search
Trees. SIGMOD Conference 1997: 62-72

