Cost Models

Operations on an Index

e Search: Given a key find all records
— More sophisticated variants as well. Why?

* |[nsert /Remove entries
— Bulk Load. Why?

Real difference between structures:
costs of operations

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
— B: The number of data pages
- Number of records per page
- (Average) time to read or write disk page

— Measuring number of page |/O’s ignores gains of
pre-fetching a sequence of pages; thus, even 1/0O
cost is only approximated.

— Average-case analysis; based on several
simplistic assumptions.

Good enough to show the overall trends!

Comparing File Organizations

Heap files (random order; insert at eof)
Sorted files, sorted on <age, sal>

Clustered B+ tree file, Alternative (1), search
key <age, sal>

Heap file with unclustered B + tree index on
search key <age, sal>

Heap file with unclustered hash index on
search key <age, sal>

Operations to Compare

Scan: Fetch all records from disk
Equality search

Range selection

Insert a record

Delete a record

Assumptions in Our Analysis

* Heap Files:

— Equality selection on key; exactly one match.
* Sorted Files:

— Files compacted after deletions.

* |ndexes:
— Alt (2), (3): data entry size = 10% size of record

— Hash: No overflow buckets.
- 80% page occupancy => File size = 1.25 data size

— Tree: 67% occupancy (this is typical).
- Implies file size = 1.5 data size

Assumptions (contd.)

 Scans:
— Leaf levels of a tree-index are chained.

— Index data-entries plus actual file scanned for
unclustered indexes.

 Range searches:

— We use tree indexes to restrict the set of data
records fetched, but ignore hash indexes.

Cost of Operations

(a) Scan

(b)
Equality

(c) Range

(d) Insert

(e) Delete

1) Heap

(
2

)
) Sorted
(3) Clustered

(4) Unclustered
Tree index

(5) Unclustered
Hash index

w Several assumptions underlie these (rough) estimates!

Cost of Operations

(a) Scan (b) Equality |(c) Range (d) Insert |(e) Delete
(1) Heap |BD 0.5BD BD 2D Search
+D

(2) Sorted |BD Dlog 2B D(log2B + |Search |Search
pgs with |+ BD +BD
match recs)

3) 1.5BD Dlog F1.5B |[D(log F 1.5B |Search |Search

Clustered + # pgs w. +D +D
match recs)

(4) Unclust. | BD(R+0.15) |D(1 + D(log r 0.15B |Search |Search

Tree index log F0.15B) |+ # pgsw. |+2D |+2D
match recs)

(5) Unclust. | BD(R+0.125) |2D BD Search |Search

Hash index + 2D + 2D

w Several assumptions underlie these (rough) estimates!

Putting the cost to use:
Choosing Indexes

Overview of where we are

 We've seen pages, records, files, and indexes

 We know what operations they perform and
that cost is really important

* Next:
— (1) How indexes used to optimize simple queries
— (2) Nitty gritty details of indexing (the algorithms)

Tuning

 Fundamental tradeoff: Each index speeds up some
operations, but slows down others

e How do we choose? Examine our workload:

e set of queries and updates we run against the db,
* and how frequently we run each one.

In this lecture, Tuning maps the workload into a set of
choices: Create a clustered hash table on
Employee.Name.

Questions about the Workload

* For each query in the workload:
— Which relations does it access?
— Which attributes are retrieved?

— Which attributes are involved in selection/join
conditions?

— How selective are these conditions likely to be?

Key questions to ask for each
qguery in your workload

Understanding the updates

* For each update in the workload:

— Which attributes are involved in selection/join
conditions?

— How selective are these conditions likely to be?

— The type of update (INSERT/DELETE/UPDATE), and the
attributes that are affected.

Choice of Indexes

e What indexes should we create?

— Which relations should have indexes?
— What field(s) should be the search key?
— Should we build several indexes?

 For each index, what kind of index?
— Clustered? Hash/tree?

Choice of Indexes

* One approach: Consider the most important
gueries in turn.

* Key Question: Adding an index improve the plan?
Yes, create it. Does it hurt update rates?

To fully answer need to understand query
evaluation in detail (much later).
1 table queries for now.

Index Selection Guidelines

e Attributes in WHERE clause are candidates for index keys.
— Exact match condition suggests hash index.

— Range query suggests tree index.

* Clustering is especially useful for range queries; can also help on equality
queries if there are many duplicates.

* Multi-attribute search keys should be considered when a WHERE
clause contains several conditions.
— Order of attributes is important for range queries.

— Such indexes can sometimes enable index-only strategies for important
gueries.

* For index-only strategies, clustering is not important!

 Tryto choose indexes that benefit as many queries as possible.
Since only one index can be clustered per relation, choose it
based on important queries that would benefit the most from
clustering.

Examples

SELECT E.dno Index on age makes
FROM Emp E sense, what kind?
WHERE E.age>40

SELECT E.dno, COUNT (¥) What kind of
FROM Emp E index?
WHERE E.age>10 How would you
GROUP BY E.dno choose to cluster?

SELECT E.dno
FROM Emp E

WHERE E.hobby=Stamps

11

30

Composite Keys

12

10

12

20

13

75

<Age, Sal>

30

11

10

12

20

12

75

13

<Sal, Age>

Name | Age | Sal
Bob 12 |10
Cal 11 |80
Joe 12 |20
Sue 13 |75

11

12

12

13

<Age>

Equality Query:
Age =12 and sal =907

Range Query:
Age =5andsal > 57

80 Composite keys in
10 Dictionary Order
20
75

<Sal>

Composite keys

* Pro:
— when they work they work well

— We’ll see a good case called “index-only”
plans

* Con:
— Guesses? (time and space)

Index-Only Plans

SELECT E.dno, COUNT(¥)
FROM Emp E
GROUP BY E.dno

What kind of index to
make each query index-
only?

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

Index-Only Plans (Contd.)

Index-only plans possible |SELECT E.dno, COUNT (*)
when FROM Emp E

1. the keyis <dno,age> |WHERE E.age=30

2. we have atreeindex |GROUP BY E.dno

with key <age,dno>

e Which is better? SELECT E.an, COUNT (*)
FROM Emp E

WHERE E.age>30

GROUP BY E.dno

e What if we consider the
second query?

Wait -- we use constraints to optimize? This is probably a shock

Index-Only Plans (Contd.)

<E.dno>
. Inde>.<-or.1ly pla.ns for SELECT D.mgr
queries involving FROM Dept D, Emp E
more than one WHERE D.dno=E.dno
table; more later.
<E.dno,E.eid>

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

Summary

* Many alternative file organizations exist, each
appropriate in some situation.

* |Index is a collection of data entries plus a way to
quickly find entries with given key values.

* |f selection queries are frequent, sorting the file,
or building an index is important.
-~ Hash-based indexes only good for equality search.

— Sorted files and tree-based indexes best for range
search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

Summary (Contd.)

* Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.
— Choice orthogonal to indexing technique used to
locate data entries with a given key value.

* Can have several indexes on a given file of
data records, each with a different search key.

* Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and dense
vs. sparse. Differences have important
consequences for utility/performance.

Summary (Contd.)

* Understanding the nature of the workload for the
application, and the performance goals, is essential

to developing a good design.

— What are the important queries and updates? What
attributes/relations are involved?

* |Indexes must be chosen to speed up important
queries (and perhaps some updates!).
- Index maintenance overhead on updates to key fields.
— Choose indexes that can help many queries, if possible.
— Build indexes to support index-only strategies.

— Clustering is an important decision; only one index on a
given relation can be clustered!

— Order of fields in composite index key can be important.

