
Buffer Management Strategies

CS 346

Outline

• CS346-level Buffer Manager Background

• Three Important Algorithms

• QLSM Model

• DBMin Algorithm

• Experiments

Buffer Managers

Buffer manager intelligently shuffles
data from main memory to disk:

It is transparent to higher levels of
DBMS operation

4

Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!

• Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

READ
WRITE

INPUT
OUTUPT

When a page is requested…

• A page is the unit of memory we request

• If Page in the pool
– Great no need to go to disk!

• If not? Choose a frame to replace.
– If there is a free frame, use it!

• Terminology: We pin a page (means it’s in use)

– If not? We need to choose a page to remove!

– How DBMS makes choice is a replacement policy

Once we choose a page to remove

• A page is dirty, if its contents have been
changed after writing

– Buffer Manager keeps a dirty bit

• Say we choose to evict P

– If P is dirty, we write it to disk

– If P is not dirty, then what?

7

How do we pick a frame?

Needs to decide on page replacement policy

•Examples: LRU, Clock algorithm, MRU

 Some work well in OS, but not

always in DB… more later

8

Least Recently Used (LRU)

• Order pages by the time of last accessed

• Always replace the least recently accessed

P5, P2, P8, P4, P1, P9, P6, P3, P7

Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?)

The Clock Approximation

• Instead we maintain a “last used clock”

– Think of pages ordered 1…N around a clock

– “The hand” sweeps around

– Pages keep a “ref bit”

• Whenever a page is referenced, set the bit

• If current is has ref bit == false choose it

• If current is referenced, then unset ref bit and
move on “Approximates LRU” since

referenced pages less likely

MRU

• Most Recently Used.

• Why would you ever want to use this?

Hint: Consider scanning a relation that has 1 Mn
pages, but we only have 1000 buffer pages…

This nasty situation is called Sequential Flooding.
Each page request causes an I/O.

Simplified Buffer Manager Flowchart

Request a Page

Find a page P that is
unpinned according to policy.

Return Frame
handle to caller

Flush P to
Disk

Dirty

What if all pages
are pinned?

Doesn’t the OS manage Pages too?

• Portability: Different OS, Different support
– Journaling, nothing, something crazy

• Limitations in OS: files cannot span disks.

• DBMS requires ability to force pages to disk
– Recovery (much later)

• DBMS is better able to predict page reference patterns
– Prefetching is harder

13

Buffer Management Summary

• Data must be in RAM for DBMS to operate on it!

• Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

READ
WRITE

INPUT
OUTUPT

3 Important Algorithms
(and ideas)

(I) Domain Separation (Reiter ’76)

• Separate pages into statically assigned domains

– If page of type X is needed, then allocate in pool X

– LRU in each Domain

– If none are available in current domain, then borrow

1: Root

2: Internal Nodes

3: Leaves

Pros and Cons

• Pro: Big observation. Not all pages are the same!

• Con 1: Concept of domain is static
– Replacement should depend on how page is used
– E.g., a page of a relation in a scan v. a join

• Con 2: No priorities among domains

– Index pages more frequently used than data pages

• Con 3: Multiuser issues.

– No load control
– Multiple users may compete for pages and interfere

(II) “New” Algorithm

Two Key Observations
1. “The priority of a page is not a property of the

page; in contrast, it is a property of the relation to
which that page belongs.”

2. Each relation should have a Working Set

Separate Buffer pool by relation

Each relation is assigned:
1. Resident Set of Pages (MRU)
2. A small set exempt from replacement

consideration

Resident Sets

Intuition:
- If near the top, then unlikely to be reused.
- If near the bottom then pages are protected.

Free Pages List

MRU, Rel 1

MRU, Rel 2

Search through,
top-down

Pros and Cons of Resident Sets

• MRU only in limited cases. When?

• How do you order the resident sets?

– Heuristic based (one could imagine some stats)

• Searching through list may be slow

• Multiuser? How do we extend this idea to
work for multiple users?

(III) Hot Set Observation

Page
Faults

Buffers

Nested Loop
Join Hotset

= 1 + |S|. Why? MRU

LRU

A hotset is a set of pages that an
operation will loop over many times.

Hot point
Model is tied to LRU

Hotset Drawbacks

• The model is tied to LRU – but LRU is awful in
some cases.

– Where?

– What can be cheaper than LRU and (sometimes)
as effective?

Quiz

1. How does the buffer pool in a database differ
from what you’d find in an OS?

2. When is MRU better than LRU?

3. Suppose you have a single buffer pool with N
pages. Suppose that |R| = M pages and |S|
= N+1 pages. How many IOs do you incur?
(hint: what buffer policy do you use?)

Motivation for QLSM

1. Want to understand that pages should be
treated differently. (from Reiter)

2. Want to understand that where a relation
comes from matters

3. Want to understand that looping behavior
(hot sets) makes a big difference

1. And is predictable!

QLSM. Main Insights

• Query Locality Set Model

• Database access methods are predictable

– handful of macro

– So, define a handful of reference access methods

• We don’t need to tie it to LRU.

Example

• Consider an index nested loop join with an
index on the joining attribute.

• Two locality sets:

1. The index and inner relation

2. The outer relation.

Handful of References. Sequential.

Sequential References: Scanning a relation.

1. Straight Sequential (SS). Only one access without
repetition.

- How many pages should we allocate?

2. Clustered Sequential (CS). Think Merge Join

- What should we keep together?

3. Looping Sequential (CR). Nested loop Join.

- What replacement policy on inner?

Random

Random References.

 1. Independent Random. Example?

 2. Clustered Random.

 - Clustered inner index, outer is clustered

 - Indexes are non-unique. (Similar to CS)

Hierarchical

• Straight Hierarchical: B+Tree Probe (X = 10)

• Hierarchical + Straight Sequential (X >= 10)

• Hierarchical + Cluster Sequential (X>= 10)

• Looping Hierarchical: Index-Nested Loop Join

– Inner relation has the index.

Discussion

Could you build a similar taxonomy of operations
for Java programs?

Do you believe this taxonomy is complete? To what
extent is it complete?

DBMin

DBMin

• Buffers are managed on a per file instance
– Active instances of the same file are given

different buffer pools – and may use different
replacement policies!

– Files share pages via global table

• Set of buffered pages associated with a file
instance is called its locality set

• Replacement Policy (RP) of a buffer simply
moves to Global Free list (not actual eviction!)

How are concurrent queries supported?

Search Algorithm Cases

• Case I: page in both global table and locality
set of requesting process
– Simply update stats (of RP) and return

• Case II: Page in memory, but not in locality set
– If page has an owner, then simply return it

– O.w., page is allocated to requestor’s LS
• Could cause an “eviction” to free page list

• Case III: Page not in memory.
– Bring it in, proceed as in case II.

Q: How could a
page be in memory

and not have an
owner?

DBMin’s Load Controller

• Activated when a file is opened or closed

– Checks whether predicted locality set would fit in
the buffer.

– If not, suspend query.

• How does the LC know how big the locality set
is?

Estimating Locality Set Size/Policy

• Straight Sequential (one-off scan)
• Clustered Sequential
• Independent Random

– If sparse, go for either 1 or b. Policy?
– If not, could upper bound using Yao’s formula

• Looping Hierarchical Root traversed children more
frequently
– If cannot hold a entire level, access may look random
– So, 3-4 pages may suffice (more now)

Question: How big is the locality set? What is the policy?

Algorithm Highlights/Summary

• Different pages used in different ways

– A page meritocracy!

– Classification and Taxonomy

• Allows us to use better replacement policy

– Big wins with right policy

• Sharing of pages through global table

– Local replacement policy just puts on global free

• Load control is built in

Questions to Reinforce the Material

• Working Set does not perform well on Joins.
– Why?

• With a load-controller, every simple algorithm
outperforms WS.
– What does the load controller prevent?

• Is it reasonable to build such a load-
controller?

Buffer Manager Extra!

Further Reading (Papers I like)

Elizabeth J. O'Neil, Patrick E. O'Neil, Gerhard Weikum:
The LRU-K Page Replacement Algorithm For Database
Disk Buffering. SIGMOD Conference 1993: 297-306

Goetz Graefe: The five-minute rule 20 years later
(and how flash memory changes the rules).
Commun. ACM 52(7): 48-59 (2009)

Jim Gray, Gianfranco R. Putzolu: The 5 Minute Rule for
Trading Memory for Disk Accesses and The 10 Byte Rule
for Trading Memory for CPU Time. SIGMOD Conference
1987: 395-398

