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This paper describes algorithms for key deletion in 
B+-trees. There are published algorithms and pseu- 
docode for searching and inserting keys, but deletion, 
due to its greater complexity and perceived lesser im- 
portance, is glossed over completely or left as an ex- 
ercise to the reader. To remedy this situation, we 
provide a well documented flowchart, algorithm, and 
pseudo-code for deletion, their relation to search and 
insertion algorithms, and a reference to a freely avail- 
able, complete B+-tree library written in the C pro- 
gramming language. 

1 M o t i v a t i o n  

A first offering of a database system implementation 
course at Stanford University required students to im- 
plement indexes to their da ta  files, either in the form 
of B+-trees or using extendible hashing. The author, 
in his capacity as teaching assistant, advised students 
to search in the literature for pseudocode or descrip- 
tions to implement these algorithms. 

This paper is motivated by the fact that not a single 
instance of the B+-tree deletion algorithm in the form 
of pseudocode seems to exist in the literature, nor do 
any elegant implementations of the algorithm exist in 
the public domain. In fact, of four implementations 
examined, two in function libraries and two embed- 
ded in database programs, two used a weak form of 
deletion discussed below, another was lengthy and 
unsuitable for use as a pedagogical tool, and the last 
was made needlessly complicated by a non-recursive 
design. 

Perhaps since tree structures can, for the most part, 
be described by a search and an insert method, few 
authors bother with the more intricate deletion algo- 
rithm, and assign it as an exercise to the reader. This 
omission goes as far back as [Knu73], and is repeated 
in virtually all of the literature since. 

2 Background 

B-trees, introduced in [BM72], are a general class 
of balanced multiway trees which serve as an index- 
ing mechanism for structured data, and are geared 
in particular towards large paged files. Two classes 
of B-tree variants were recognized, B+-trees and 
B*-trecs, which offer additional properties over the 
original model. In this lineage it is also worthwhile to 
cite 2-3 trees, devised in 1970 by Hopcroft [AHU83], 
since they arc in fact the B-tree structure with the 
smallest fanout, i.e. number of pointers per node, 
and red-black trees [GS78], which effectively model 
B-trees by using one or two binary nodes to repre- 
sent a single 2-3 node. An in depth analysis of most 
tree variants is found in [Woo93], which presents 2-3 + 
trees in its examples. 

The seminal paper on B-trees [BM72] presents sim- 
ple flowcharts for the functions to manipulate them, 
and [Knu73] also describes search and insert algo- 
rithms for them. [Com79] provides good general de- 
scriptions of B-trees and their variants, as well as rel- 
atively detailed descriptions of algorithmsto perform 
search, insertion and deletion on B-trees, although in 
a dated programming style. 

B+-trccs differ from B-trees in one aspect which 
makes them desirable for database systems, namely 
that no data resides in the interior nodes of the trees. 
Since all of the data is contained at the level of 
the leaves, the leaves can be linked together, allow- 
ing sequential access to the data once the leaves are 
reached. This also means that interior nodes contain 
only referential data, acting as a guide to the infor- 
mation kept at the leaves. As a result the algorithms 
for B-trees and their variants are not identical. 

Unfortunately, the + and * notations are not uni- 
versally accepted, and several good references leave 
them out. It appears that the B-trees discussed in 
[AHU83] as well as in [FZ921 and [GR931 are in fact 
B+-trees and the algorithms described there could be 
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implemented by filling in the details .  

The cause of the deletion gap in the algorithmic 
record may stem from the fact that I  there is no sin- 
gle paper introducing the B+-tree concept. Instead, 
the notion of maintaining all data in leaf nodes is 
repeatedly brought up as an interesting variant. As 
the importance of B +-trees gained recognition in the 
database community, a number of textbooks geared 
towards databases have presented them. In [SalSS] 
B+-tree algorithms are presented, though deletion is 
in fact incomplete and described as “quite a com- 
plicated” algorithm. Both [Liv90] and [FZ92] cover 
them as well, but omit deletion. [FZ92] does present 
a useful figure depicting the recursive approach to 
the insertion algorithm for B-trees, which can be ap- 
plied to any of these tree structures. Finally, [EN941 
contains non-recursive pseudocode for search and in- 
sertion in B+-trees, but just an illustrative diagram 
for deletion. 

The only complete deletion algorithms are found, 
for 2-3 trees in [Oli93] and for B-trees in [Wir76], both 
of which contain a wealth of pseudocode for many 
other algorithms. Red-black tree deletion code can 
found in [CLRSO] or at the source [GS78]. 

3 Definitions 

To firmly ground the discussion, we begin by review- 
ing the definition of the B+-tree structure and the 
invariants it must obey. Also, refer to Figure 2 at the 
end of the paper depicting three representative trees 
of height four. 

B+-tree 
is a structure of nodes linked by pointers 
is anchored by a special node called the 
root, and bounded by leaves 
has a unique path to each leaf, and all paths 
are equal length 
stores keys only at leaves, and stores refer- 
ence values in other, internal, nodes 
guides key search, via the reference values, 
from the root to the leaves 

is either internal or a leaf, including the root 
node 
contains at most n entries and one extra 
pointer for some fixed n 

has no fewer than [?2/2J entries, the root 
excepted 

root node’ 
l is a leaf when it is the only node in the tree 

and will then contain at least one entry 

0 must 
when 

have at least 
it is internal 

internal node 

0 contains 

2 pointers to other nodes 

entries consisting 
value and a pointer towards the leaves 

of a reference 

l its entries point to data classified as greater 
than or equal to the corresponding reference 
value 

l its e&tra pointer references data classified 
as less than the node’s smallest reference 
value 

leaf node 

l contains entries consisting of a key value 
and a pointer to the storage location of data 
matching the key 

a its extra pointer references the next leaf 
node in the tree ordering; leaves linked in 
this manner are neighbors 

In all B-tree type structures, key search proceeds 
from the root downwards, following pointers to the 
nodes which contain the appropriate range of keys, 
as indicated by the reference values. Likewise, all 
B-trees grow from the leaves up. After obtaining the 
appropriate location for the new entry, it is inserted. 
If the node becomes overfull it splits in half and a 
pointer to the new half is returned for insertion in 
the parent node, which if full will in turn split, and 
so on. 

B+-trees distinguish internal and leaf nodes, keep- 
ing data only at the leaves, whereas ordinary B-trees 
would also store keys in the interior. B+-tree inser- 
tion, therefore, requires managing the interior node 
reference values in addition to simply finding a spot 
for the data, as in the simpler B-tree algorithm,-- 7 : 

B*-tree algorithms incorporate an insertion over- 
flow mechanism to enforce higher node utilization lev- 
els. B*-tree insertion at fUll nodes may avoid splitting 
by first checking neighboring ‘nodes. Keys from the 
full node are redistributed to a less full neighbor. If 
both neighbors are full, however, the split must take 
place. 

Deletion in B+-trees, as in B*-trees, is precisely 
the converse of B*-tree insertion. If a node falls be- 
low its minimum number of entries after the dele- 
tion, its neighboring nodes are checked. If they have 
more than the minimum number of keys, a fraction 
of the surplus keys from the larger neighbor are re- 
distributed to the node. Only if both neighbors are 
minimal in size are nodes merged together. 
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4 Lazy Deletion 

There has been some research on the acceptability 
of relaxing the constraint of minimum node siee to 
reduce the number of so-called unsafe tree operations, 
i.e., those which contain node splitting and merging 
[ZH89]. 

The debate has culminated in analysis of a weaker 
form of the deletion algorithm which we call &zq 
deletion, that imposes no constraints on the number 
of entries left in the nodes, allowing them to empty 
completely before simply removing them. According 
to [GR93], most database system implementations of 
B+-trees have adopted this approach. Its most effec- 
tive use is when it is vital to allow concurrent access 
to the tree [JS93b], and excessive splitting and merg- 
ing of nodes would restrict concurrency. 

[JS89] derives some analytic solutions calculating 
memory utilization for B +-trees under a mix of inser- 
tions and lazy deletions, based on previous research 
which considered insertions only [BY89]. The simu- 
lations in [JS89] support its analysis to show that in 
typical situations, where deletions don’t outnumber 
insertiuns -*ti the mix of operations, the tree nodes 
will contain acceptable percentages of entries. 

One of the work’s assumptions [JS93a] is that the 
keys and tree operations are chosen uniformly from a 
random distribution. This assumption is unreason- 
able in certain realistic situations such as one de- 
scribed below. Allowing interior nodes with only 
a single pointer to exist in a B+-tree creates the 
possibility for arbitrarily unbalanced trees of any 
height, which are virtually empty, and in which access 
times have degenerated from the logarithmic bound 
B+-trees are meant to guarantee to a worst 
bounded access time. Since nod .es are not 

case un- 
removed 

until they are completely empty, the lazy deletion al- 
gorithm does not regulate tree height effectively. 

5 Example 

In our example, the keys on which data are inserted 
increase monotonically, such as a time stamp, and 
old data is deleted soon after insertion. Mr. Hapless 
of Half-Baked pastry shop keeps information about 
orders as they come in, summarizes them every day, 
and deletes all 
every month. 

but the summaries at the beginning of 

In an actual B+-tree, this activity can correspond 
to the following operations. First, fill a node until 
it splits, then delete all but one entry in the node 
containing the smaller keys. Likewise, every time an 
internal node splits, delete all but one of the keys 
pointed to by the node referencing the smaller keys. 

Since the tree is growing in one direction, the dele- 
tions of smaller keys don’t change the rate of growth 
of the tree, but they do make it virtually empty. 

In such a scenario, the resulting tree contains n 
paths from the root, n- 1 of which are of some tied 
height, let’s say h, each with exactly one key at the 
leaf. The nth path from the root leads to a subtree 
of height h - 1 with the same structure, as shown in 
figure 2(c) at the end of the paper. 

Interestingly, the insertion algorithm must accept 
this tree as full, that is, ready to acquire a new root 
at the next appropriate insertion, even though it con- 
tains only h*(n- 1) keys, less than the expected min- 
imum ( [n/21)h keys for a tree of this height. More 
surprisingly, this structure can be pared down to a 
single path of length h simply by deleting aJl but one 
of the tree entries, so that only a single key remains. 

Admittedly, the worst case is unlikely, but since 
plausible scenarios for its occurrence exist, a complete 
and correct deletion algorithm is preferable. 

6 Algorithm with Flowchart 

6.1 Deletion 

Before presenting pseudocode we provide a basic 
flowchart and algorithm to illuminate its function. 
Figure 1 shows how the initial downwards recursive 
search is followed by an upwards unwinding of the 
recursion, during which the deletion, and potentially 
the rebalancing of the tree, takes place. The second 
phase corresponds to the shaded area of the figure. 
A set of immediate neighbors and anchors, defined 
below, is calculated during the search phase, for use 
during the tree rebalancing. The algorithm outline is 
as follows: 

1. 

2. 
3. 

4. 
5. 

6. 
7. 

8. 

recurse to a leaf node from root to find deletable 
entry: for nodes in the search path, calculate 
immediate neighbors and their anchors 
if entry found at leaf node continue else stop 
remove appropriate entry fiom current node 
; f  there is underflow continue else done 
if current node isn’t root, continue else collapse 
root: make its only child into the new root so 
tree height decreases, done 

check number of entries in immediate neighbors 

if both are minimal sized continue ebe balance 
current node: shift over half of a neighbor’s sur- 
plus keys, adjust anchor, done 

merge with a neighbor whose anchor is the cur- 
rent node’s parent, unwind to parent node and 
continue at 3. 
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FindDeleteRebalance 

[Find Node (recursive t 

n @ ~  

test with an overflow test, the node merging block 
with a node splitting block, and the collapse root 
block with a new root block, while leaving out the 
minimal neighbor test. B*-tree insertion includes a 
test for maximal  neighbors to determine if overflow 
rebalancing is possible. 

7' P s e u d o c o d e  I m p l e m e n t a t i o n  

The pseudocode below is procedural in style, based 
on a C library implemented by the author.  Single line 
comments  are G + +  style. 

The key is assumed to be of some type keyT, and 
the node variables are of a node pointer type ~tptr. 

d e l e t e ( k e y )  
b e g i n  

balanceNode = M0_BALANCE 
r o o t  = f i ndReba l ance ( roo tNode ,  MO_NODE, N0_MODE, 

NO_NODE, IO_IODE, key) 

end 

Figure 1: Recursive B+-tree deletion flowchart 

To describe the management  of reference values 
in internal nodes some further definitions are useful. 
The parent of a node is the node immediately pre- 
ceding it in its search path,  thus an ancestor is any 
node in the path to a node. An immediate neighbor 
of a node is a node at  the same tree level containing 
values consecutive to those of the node. The ancestor 
node at which two other nodes'  search paths diverge is 
called their anchor. A single reference value in an an- 
chor determines whether a search continues towards 
some node or its immediate neighbor. I f  values shift 
between nodes after key deletion, the anchor value 
described above must also be updated.  Furthermore, 
when a merge or shift takes place between two inter- 
nal nodes, their anchor value must  also shift to the 
node receiving entries, in order to maintain correct 
tree structure. Figure 2(b) shows the anchors of a 
node's left and right neighbors. 

6.2  N o t e s  on  S e a r c h  a n d  I n s e r t i o n  

Key search consists of a recursive descent to the 
leaves, without any action as the recursion unwinds. 
The first two steps of the deletion algorithm corre- 
spond to a search. Insertion replaces the underflow 

f i n d R e b a l a n c e ( t h i s N o d e ,  l e f t N o d e ,  r i g h t N o d e ,  
1Anchor,  r a n c h e r ,  key) 

b e g i n  
v a t  removeNode, nextNode,  n e x t L e f t ,  n e x t R i g h t ,  

nextAncL, nex t  AncR 

/ /  PART 1: r e c u r s i v e  de sce n t  f rom r o o t  to  l e a s  node 

/ /  f i n d  the  nodes  n e e d i n g  rebe~.ancing 
i f  t h i sNode  i s  no t  minimal  s i z e d  

balanceNode = N0_BLLANCE 
e l s e  i f  balanceNode == E0_BALANCE 

be&anceNode = cu~rentNode 

/ /  node l o c a t i o n  b e s t  ma t c h ing  key value 
nextNode = e n t r y  p o i n t e r  f o r  key 

i f  th i sNode  i s  no t  a l e a s  / /  c o n t i n u e  s e a r c h  

/ /  c a l c u l a t e  n e i g h b o r  & anchor  nodes  
i f  nextNode i s  l e a s t  e n t r y  i n  t h i sNode  

nex~cLefl; = greatest e n t r y  pointer of  l e f tNode  
nextAncL = 1Anchor 

e l s e  
n e x t L e f t  = p r e c e d i n g  e n t r y  p o i n t e r  
nextAncL = th i sNode  

i f  nextNode i s  g r e a t e s t  e n t r y  i n  th i sNode  
n e x t R i g h t  = l e a s t  e n t r y  p o i n t e r  of  r ightMode 
nextAncR = r a n c h e r  

else 
n e x t R i g h t  = f o l l o w i n g  e n t r y  p o i n t e r  
nextAncR = thisMode 

/ /  r e c u r s i v e  c a l l  
removeNode = 

findRebaJ.ance (nextNode, n e x t L e f t ,  n e x t R i g h t ,  
nextAncL, nextAncR, key) 

e l s e  / /  key was found  o r  no t  
i f  e n t r y  p o i n t e r  f o r  key e x i s t s  

removeNode = nextNode 
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else 

removeNode = NO_MODE 

// PART 2: delete key, unvind recursion, rebalance tree 

// remove entry from current node 

if removeNode == nextNode 

clear remove]ode entry in thisNode 

free removeNode memory 

// check .hich rehalancing actions are needed 

if halanceN~e == iO_B&LANCE 
done = N0_NODE 

else if thisNode is root 

done = collapseRoot(thisNode) 

else 

done = r e b a l a n c e ( t h i s N o d e ,  l e f tNode ,  r ightNode,  
l f n o h o r ,  r ancher )  

r e t u r n  done 
end 

collapseRoot(oldRoot) 

begin 

if oldRoot is leaf 

newRoot = N0_NODE // tree is empty 

else 

newRoot = entry pointer to root's sole child 

free oldRoot memory 

return newRoot 

end 

r e b a l a n c e ( t h i s N o d e ,  l e f tNode ,  r igh tNode ,  l f n c h o r ,  r anche r )  
beg in  

/ /  f i n d  a ne ighbor  & anchor f o r  r e b a l a n c i n g  
balanceNode = more f u l l  of  ~ le f tNode ,  r ightNode~ 

/ /  s e l e c t  s h i f t  or  merge o p e r a t i o n  
i f  s ize(ba lenceNode)  i s  not  minimal  

anchorNode = balanceNode anchor in  (1Anchor, rancher> 
done = s h i f t ( t h i s N o d e ,  balanceNode,  anchorNode) 

else 

// at least one anchor is thisSode's parent 

anchorNode = thisNode parent in ~iAnchor, rfnchor~ 

mergeNode = anchorNode child in ~leftNode, rightNode> 

done = merge(thisNode, mergeNode, anchorNode) 

return done 

end 

s h i f t ( t h i s N o d e ,  neighborNode, anchorNode) 
beg in  

// reference value separates the nodes' data 

if thisNode is an internal node 

copy anchorNode separator value to thisNode 

// equalize the nodes' sizes 

repeat 

shift neighborNode entries to thisNodo 

until size(neighborNode) == size(thisNode) 

// nev reference value reflects shifted data 

copy new separator value to anchorNode 

// no more nodes need removal 

balemceNode = N0_BALANCE 

return|0_NODE 

end 

merge(thisMode,  neighborNode, emohorNode) 
beg in  

/ /  r e f e r e n c e  va lue  s e p a r a t e s  the  nodes ~ da ta  
i f  th isNode i s  an i n t e r n a l  node 

copy anchorNode s e p a r a t o r  va lue  to  neighborNode 

// empty one of the rye nodes 

r e pe a t  
shift thisNode entries to neighborNode 

until size(thisNode) == 0 

// adjust node pointer value in leaf node 

if thisNode is leaf 

set thisNodeJs extra pointer to be neighborNode's 

// set empty node up for later removal 

r e t u r n  thisNode 
end 

8 C o n c l u s i o n  

We hope that the the information presented here, 
while hardly revolutionary, fills an unexpected gap. 
Our purpose has been to show that a straightfor- 
ward implementation of B+-tree deletion fits well 
in a common framework with search and inser- 
tion methods, and that its correctness is vital to 
maintain the tree invariants. A complete, com- 
mented and fully parametrized library of B+-tree al- 
gorithms in the C programming language is available 
by anonymous ftp from db.ste~:~ord.odu in the di- 
rectory ":~tp/pub/jarmJm.k/btroo/, or over the web at 
http ://www-db. st an~ord, edu: 80/pub/j annink/btree/. 
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Data 
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Figure 2: height 4 trees (a) max imum (b) minimum 
(c) a 'maximal '  tree under lazy deletion 

A Appendix :  2-3+-trees 

Figure 2(a) depicts the max imum 2-3+-trees of height 
4, which references 54 keys. Any insertion into this 
tree will cause a new root to be created. Figure 2(b) 
is the minimum 2-3+-tree of height 4. Any deletion 
from it would cause a sequence of merges culminating 
in the collapse of the root,  resulting in a height 3 tree 
referencing 7 keys. 

Trees for which the insertion of some key increases 
its height are called maximal .  Normally, a smallest 
maximal  2-3+-tree of height 3 references 8 keys, and 
would appear  as Figure 2(b) plus one node after the 
9th key is inserted and the new root added. The tree 
in Figure 2(c), pared down through lazy deletion is 
still maximal.  An insert to its r ightmost node will 
cause it to require a new root, even though the re- 
suiting height 5 tree will reference only 9 keys. 
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