
Implementing Deletion in B+-Trees

J a n J a n n i n k

S t a n f o r d U n i v e r s i t y

C o m p u t e r S c i en ce D e p t .

S t a n f o r d , C A 94305

e-mai l : j a n @ c s . s t a n f o r d . e d u

A b s t r a c t

This paper describes algorithms for key deletion in
B+-trees. There are published algorithms and pseu-
docode for searching and inserting keys, but deletion,
due to its greater complexity and perceived lesser im-
portance, is glossed over completely or left as an ex-
ercise to the reader. To remedy this situation, we
provide a well documented flowchart, algorithm, and
pseudo-code for deletion, their relation to search and
insertion algorithms, and a reference to a freely avail-
able, complete B+-tree library written in the C pro-
gramming language.

1 M o t i v a t i o n

A first offering of a database system implementation
course at Stanford University required students to im-
plement indexes to their da ta files, either in the form
of B+-trees or using extendible hashing. The author,
in his capacity as teaching assistant, advised students
to search in the literature for pseudocode or descrip-
tions to implement these algorithms.

This paper is motivated by the fact that not a single
instance of the B+-tree deletion algorithm in the form
of pseudocode seems to exist in the literature, nor do
any elegant implementations of the algorithm exist in
the public domain. In fact, of four implementations
examined, two in function libraries and two embed-
ded in database programs, two used a weak form of
deletion discussed below, another was lengthy and
unsuitable for use as a pedagogical tool, and the last
was made needlessly complicated by a non-recursive
design.

Perhaps since tree structures can, for the most part,
be described by a search and an insert method, few
authors bother with the more intricate deletion algo-
rithm, and assign it as an exercise to the reader. This
omission goes as far back as [Knu73], and is repeated
in virtually all of the literature since.

2 Background

B-trees, introduced in [BM72], are a general class
of balanced multiway trees which serve as an index-
ing mechanism for structured data, and are geared
in particular towards large paged files. Two classes
of B-tree variants were recognized, B+-trees and
B*-trecs, which offer additional properties over the
original model. In this lineage it is also worthwhile to
cite 2-3 trees, devised in 1970 by Hopcroft [AHU83],
since they arc in fact the B-tree structure with the
smallest fanout, i.e. number of pointers per node,
and red-black trees [GS78], which effectively model
B-trees by using one or two binary nodes to repre-
sent a single 2-3 node. An in depth analysis of most
tree variants is found in [Woo93], which presents 2-3 +
trees in its examples.

The seminal paper on B-trees [BM72] presents sim-
ple flowcharts for the functions to manipulate them,
and [Knu73] also describes search and insert algo-
rithms for them. [Com79] provides good general de-
scriptions of B-trees and their variants, as well as rel-
atively detailed descriptions of algorithmsto perform
search, insertion and deletion on B-trees, although in
a dated programming style.

B+-trccs differ from B-trees in one aspect which
makes them desirable for database systems, namely
that no data resides in the interior nodes of the trees.
Since all of the data is contained at the level of
the leaves, the leaves can be linked together, allow-
ing sequential access to the data once the leaves are
reached. This also means that interior nodes contain
only referential data, acting as a guide to the infor-
mation kept at the leaves. As a result the algorithms
for B-trees and their variants are not identical.

Unfortunately, the + and * notations are not uni-
versally accepted, and several good references leave
them out. It appears that the B-trees discussed in
[AHU83] as well as in [FZ921 and [GR931 are in fact
B+-trees and the algorithms described there could be

S I G M O D R E C O R D , Vol. 24, No. 1, M a r c h 1995 33

implemented by filling in the details .

The cause of the deletion gap in the algorithmic
record may stem from the fact that I there is no sin-
gle paper introducing the B+-tree concept. Instead,
the notion of maintaining all data in leaf nodes is
repeatedly brought up as an interesting variant. As
the importance of B +-trees gained recognition in the
database community, a number of textbooks geared
towards databases have presented them. In [SalSS]
B+-tree algorithms are presented, though deletion is
in fact incomplete and described as “quite a com-
plicated” algorithm. Both [Liv90] and [FZ92] cover
them as well, but omit deletion. [FZ92] does present
a useful figure depicting the recursive approach to
the insertion algorithm for B-trees, which can be ap-
plied to any of these tree structures. Finally, [EN941
contains non-recursive pseudocode for search and in-
sertion in B+-trees, but just an illustrative diagram
for deletion.

The only complete deletion algorithms are found,
for 2-3 trees in [Oli93] and for B-trees in [Wir76], both
of which contain a wealth of pseudocode for many
other algorithms. Red-black tree deletion code can
found in [CLRSO] or at the source [GS78].

3 Definitions

To firmly ground the discussion, we begin by review-
ing the definition of the B+-tree structure and the
invariants it must obey. Also, refer to Figure 2 at the
end of the paper depicting three representative trees
of height four.

B+-tree
is a structure of nodes linked by pointers
is anchored by a special node called the
root, and bounded by leaves
has a unique path to each leaf, and all paths
are equal length
stores keys only at leaves, and stores refer-
ence values in other, internal, nodes
guides key search, via the reference values,
from the root to the leaves

is either internal or a leaf, including the root
node
contains at most n entries and one extra
pointer for some fixed n

has no fewer than [?2/2J entries, the root
excepted

root node’
l is a leaf when it is the only node in the tree

and will then contain at least one entry

0 must
when

have at least
it is internal

internal node

0 contains

2 pointers to other nodes

entries consisting
value and a pointer towards the leaves

of a reference

l its entries point to data classified as greater
than or equal to the corresponding reference
value

l its e&tra pointer references data classified
as less than the node’s smallest reference
value

leaf node

l contains entries consisting of a key value
and a pointer to the storage location of data
matching the key

a its extra pointer references the next leaf
node in the tree ordering; leaves linked in
this manner are neighbors

In all B-tree type structures, key search proceeds
from the root downwards, following pointers to the
nodes which contain the appropriate range of keys,
as indicated by the reference values. Likewise, all
B-trees grow from the leaves up. After obtaining the
appropriate location for the new entry, it is inserted.
If the node becomes overfull it splits in half and a
pointer to the new half is returned for insertion in
the parent node, which if full will in turn split, and
so on.

B+-trees distinguish internal and leaf nodes, keep-
ing data only at the leaves, whereas ordinary B-trees
would also store keys in the interior. B+-tree inser-
tion, therefore, requires managing the interior node
reference values in addition to simply finding a spot
for the data, as in the simpler B-tree algorithm,-- 7 :

B*-tree algorithms incorporate an insertion over-
flow mechanism to enforce higher node utilization lev-
els. B*-tree insertion at fUll nodes may avoid splitting
by first checking neighboring ‘nodes. Keys from the
full node are redistributed to a less full neighbor. If
both neighbors are full, however, the split must take
place.

Deletion in B+-trees, as in B*-trees, is precisely
the converse of B*-tree insertion. If a node falls be-
low its minimum number of entries after the dele-
tion, its neighboring nodes are checked. If they have
more than the minimum number of keys, a fraction
of the surplus keys from the larger neighbor are re-
distributed to the node. Only if both neighbors are
minimal in size are nodes merged together.

34 SIGMOD RECORD, Vol. 24, No. 1, March 1995

4 Lazy Deletion

There has been some research on the acceptability
of relaxing the constraint of minimum node siee to
reduce the number of so-called unsafe tree operations,
i.e., those which contain node splitting and merging
[ZH89].

The debate has culminated in analysis of a weaker
form of the deletion algorithm which we call &zq
deletion, that imposes no constraints on the number
of entries left in the nodes, allowing them to empty
completely before simply removing them. According
to [GR93], most database system implementations of
B+-trees have adopted this approach. Its most effec-
tive use is when it is vital to allow concurrent access
to the tree [JS93b], and excessive splitting and merg-
ing of nodes would restrict concurrency.

[JS89] derives some analytic solutions calculating
memory utilization for B +-trees under a mix of inser-
tions and lazy deletions, based on previous research
which considered insertions only [BY89]. The simu-
lations in [JS89] support its analysis to show that in
typical situations, where deletions don’t outnumber
insertiuns -*ti the mix of operations, the tree nodes
will contain acceptable percentages of entries.

One of the work’s assumptions [JS93a] is that the
keys and tree operations are chosen uniformly from a
random distribution. This assumption is unreason-
able in certain realistic situations such as one de-
scribed below. Allowing interior nodes with only
a single pointer to exist in a B+-tree creates the
possibility for arbitrarily unbalanced trees of any
height, which are virtually empty, and in which access
times have degenerated from the logarithmic bound
B+-trees are meant to guarantee to a worst
bounded access time. Since nod .es are not

case un-
removed

until they are completely empty, the lazy deletion al-
gorithm does not regulate tree height effectively.

5 Example

In our example, the keys on which data are inserted
increase monotonically, such as a time stamp, and
old data is deleted soon after insertion. Mr. Hapless
of Half-Baked pastry shop keeps information about
orders as they come in, summarizes them every day,
and deletes all
every month.

but the summaries at the beginning of

In an actual B+-tree, this activity can correspond
to the following operations. First, fill a node until
it splits, then delete all but one entry in the node
containing the smaller keys. Likewise, every time an
internal node splits, delete all but one of the keys
pointed to by the node referencing the smaller keys.

Since the tree is growing in one direction, the dele-
tions of smaller keys don’t change the rate of growth
of the tree, but they do make it virtually empty.

In such a scenario, the resulting tree contains n
paths from the root, n- 1 of which are of some tied
height, let’s say h, each with exactly one key at the
leaf. The nth path from the root leads to a subtree
of height h - 1 with the same structure, as shown in
figure 2(c) at the end of the paper.

Interestingly, the insertion algorithm must accept
this tree as full, that is, ready to acquire a new root
at the next appropriate insertion, even though it con-
tains only h*(n- 1) keys, less than the expected min-
imum ([n/21)h keys for a tree of this height. More
surprisingly, this structure can be pared down to a
single path of length h simply by deleting aJl but one
of the tree entries, so that only a single key remains.

Admittedly, the worst case is unlikely, but since
plausible scenarios for its occurrence exist, a complete
and correct deletion algorithm is preferable.

6 Algorithm with Flowchart

6.1 Deletion

Before presenting pseudocode we provide a basic
flowchart and algorithm to illuminate its function.
Figure 1 shows how the initial downwards recursive
search is followed by an upwards unwinding of the
recursion, during which the deletion, and potentially
the rebalancing of the tree, takes place. The second
phase corresponds to the shaded area of the figure.
A set of immediate neighbors and anchors, defined
below, is calculated during the search phase, for use
during the tree rebalancing. The algorithm outline is
as follows:

1.

2.
3.

4.
5.

6.
7.

8.

recurse to a leaf node from root to find deletable
entry: for nodes in the search path, calculate
immediate neighbors and their anchors
if entry found at leaf node continue else stop
remove appropriate entry fiom current node
; f there is underflow continue else done
if current node isn’t root, continue else collapse
root: make its only child into the new root so
tree height decreases, done

check number of entries in immediate neighbors

if both are minimal sized continue ebe balance
current node: shift over half of a neighbor’s sur-
plus keys, adjust anchor, done

merge with a neighbor whose anchor is the cur-
rent node’s parent, unwind to parent node and
continue at 3.

SIGMOD RECORD, Vol. 24, No. 1, March 1995 35

FindDeleteRebalance

[Find Node (recursive t

n @ ~

test with an overflow test, the node merging block
with a node splitting block, and the collapse root
block with a new root block, while leaving out the
minimal neighbor test. B*-tree insertion includes a
test for maximal neighbors to determine if overflow
rebalancing is possible.

7' P s e u d o c o d e I m p l e m e n t a t i o n

The pseudocode below is procedural in style, based
on a C library implemented by the author. Single line
comments are G + + style.

The key is assumed to be of some type keyT, and
the node variables are of a node pointer type ~tptr.

d e l e t e (k e y)
b e g i n

balanceNode = M0_BALANCE
r o o t = f i ndReba l ance (roo tNode , MO_NODE, N0_MODE,

NO_NODE, IO_IODE, key)

end

Figure 1: Recursive B+-tree deletion flowchart

To describe the management of reference values
in internal nodes some further definitions are useful.
The parent of a node is the node immediately pre-
ceding it in its search path, thus an ancestor is any
node in the path to a node. An immediate neighbor
of a node is a node at the same tree level containing
values consecutive to those of the node. The ancestor
node at which two other nodes' search paths diverge is
called their anchor. A single reference value in an an-
chor determines whether a search continues towards
some node or its immediate neighbor. I f values shift
between nodes after key deletion, the anchor value
described above must also be updated. Furthermore,
when a merge or shift takes place between two inter-
nal nodes, their anchor value must also shift to the
node receiving entries, in order to maintain correct
tree structure. Figure 2(b) shows the anchors of a
node's left and right neighbors.

6.2 N o t e s on S e a r c h a n d I n s e r t i o n

Key search consists of a recursive descent to the
leaves, without any action as the recursion unwinds.
The first two steps of the deletion algorithm corre-
spond to a search. Insertion replaces the underflow

f i n d R e b a l a n c e (t h i s N o d e , l e f t N o d e , r i g h t N o d e ,
1Anchor, r a n c h e r , key)

b e g i n
v a t removeNode, nextNode, n e x t L e f t , n e x t R i g h t ,

nextAncL, nex t AncR

/ / PART 1: r e c u r s i v e de sce n t f rom r o o t to l e a s node

/ / f i n d the nodes n e e d i n g rebe~.ancing
i f t h i sNode i s no t minimal s i z e d

balanceNode = N0_BLLANCE
e l s e i f balanceNode == E0_BALANCE

be&anceNode = cu~rentNode

/ / node l o c a t i o n b e s t ma t c h ing key value
nextNode = e n t r y p o i n t e r f o r key

i f th i sNode i s no t a l e a s / / c o n t i n u e s e a r c h

/ / c a l c u l a t e n e i g h b o r & anchor nodes
i f nextNode i s l e a s t e n t r y i n t h i sNode

nex~cLefl; = greatest e n t r y pointer of l e f tNode
nextAncL = 1Anchor

e l s e
n e x t L e f t = p r e c e d i n g e n t r y p o i n t e r
nextAncL = th i sNode

i f nextNode i s g r e a t e s t e n t r y i n th i sNode
n e x t R i g h t = l e a s t e n t r y p o i n t e r of r ightMode
nextAncR = r a n c h e r

else
n e x t R i g h t = f o l l o w i n g e n t r y p o i n t e r
nextAncR = thisMode

/ / r e c u r s i v e c a l l
removeNode =

findRebaJ.ance (nextNode, n e x t L e f t , n e x t R i g h t ,
nextAncL, nextAncR, key)

e l s e / / key was found o r no t
i f e n t r y p o i n t e r f o r key e x i s t s

removeNode = nextNode

36 S I G M O D R E C O R D , Vol. 24, No . 1, M a r c h 1995

else

removeNode = NO_MODE

// PART 2: delete key, unvind recursion, rebalance tree

// remove entry from current node

if removeNode == nextNode

clear remove]ode entry in thisNode

free removeNode memory

// check .hich rehalancing actions are needed

if halanceN~e == iO_B&LANCE
done = N0_NODE

else if thisNode is root

done = collapseRoot(thisNode)

else

done = r e b a l a n c e (t h i s N o d e , l e f tNode , r ightNode,
l f n o h o r , r ancher)

r e t u r n done
end

collapseRoot(oldRoot)

begin

if oldRoot is leaf

newRoot = N0_NODE // tree is empty

else

newRoot = entry pointer to root's sole child

free oldRoot memory

return newRoot

end

r e b a l a n c e (t h i s N o d e , l e f tNode , r igh tNode , l f n c h o r , r anche r)
beg in

/ / f i n d a ne ighbor & anchor f o r r e b a l a n c i n g
balanceNode = more f u l l of ~ le f tNode , r ightNode~

/ / s e l e c t s h i f t or merge o p e r a t i o n
i f s ize(ba lenceNode) i s not minimal

anchorNode = balanceNode anchor in (1Anchor, rancher>
done = s h i f t (t h i s N o d e , balanceNode, anchorNode)

else

// at least one anchor is thisSode's parent

anchorNode = thisNode parent in ~iAnchor, rfnchor~

mergeNode = anchorNode child in ~leftNode, rightNode>

done = merge(thisNode, mergeNode, anchorNode)

return done

end

s h i f t (t h i s N o d e , neighborNode, anchorNode)
beg in

// reference value separates the nodes' data

if thisNode is an internal node

copy anchorNode separator value to thisNode

// equalize the nodes' sizes

repeat

shift neighborNode entries to thisNodo

until size(neighborNode) == size(thisNode)

// nev reference value reflects shifted data

copy new separator value to anchorNode

// no more nodes need removal

balemceNode = N0_BALANCE

return|0_NODE

end

merge(thisMode, neighborNode, emohorNode)
beg in

/ / r e f e r e n c e va lue s e p a r a t e s the nodes ~ da ta
i f th isNode i s an i n t e r n a l node

copy anchorNode s e p a r a t o r va lue to neighborNode

// empty one of the rye nodes

r e pe a t
shift thisNode entries to neighborNode

until size(thisNode) == 0

// adjust node pointer value in leaf node

if thisNode is leaf

set thisNodeJs extra pointer to be neighborNode's

// set empty node up for later removal

r e t u r n thisNode
end

8 C o n c l u s i o n

We hope that the the information presented here,
while hardly revolutionary, fills an unexpected gap.
Our purpose has been to show that a straightfor-
ward implementation of B+-tree deletion fits well
in a common framework with search and inser-
tion methods, and that its correctness is vital to
maintain the tree invariants. A complete, com-
mented and fully parametrized library of B+-tree al-
gorithms in the C programming language is available
by anonymous ftp from db.ste~:~ord.odu in the di-
rectory ":~tp/pub/jarmJm.k/btroo/, or over the web at
http ://www-db. st an~ord, edu: 80/pub/j annink/btree/.

9 A c k n o w l e d g e m e n t s

Professor Jennifer Widom's database implementation
course is the primary source of inspiration for this
work. Furthermore, professor Widom's encourage-
ment and suggestions improved its quality immeasur-
ably.

R e f e r e n c e s

[AHU83] A. V. Aho, J . E. Hopcrof t , and J . D. U n m a n .

Data Structures and Algorithms. A d d i s o n -

Wesley, Read ing MA , 1983.

IBM72] R. Bayer and E. McCre igh t . Organ iza t ion and
m a i n t e n a n c e of large ordered indexes. Acts In-
/ormatica, 1:173-189, 1972.

S I G M O D R E C O R D , Vol. 24, No. 1, M a r c h 1995 37

[BY89]

[CLRgO]

[Com79]

[EN94]

[FZ92]

[GR93]

[GS78]

[JS89]

[JS93a]

[JS93b]

[Knu73]

[Liv90]

[oli93]

[sales]

[Wit76]

[Woo93]

[ZH89]

R. A. Baeza-Yates. Expected behaviour of B +-
trees under random insertions. Acta Informat-
tea, 26(5):439-471, 1989.

T. H. Cormen, C,. E. Lelserson, and R. L.
Rivest. Introduction to Algorithms. MIT Press,
Cambridge MA, 1990.

D. Comer. The ubiquitous B-tree. ACM Com-
puting Surveys, 11(2):121-137, 1979.

R. Elmasri and S. B. Navathe. Fundamentals
of Database Systems. Benjamin / Cummings,
Redwood City CA, second edition, 1994.

M. J. Folk and B. Zoellick. File Structures.
Addison-Wesley, Reading MA, second edition,
1992.

J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kauffman,
1993.

L. J. Guibas and R. Sedgewick. A dichromatic
framework for balanced trees. In Proceedings of
the 19th Annual Symposium on Foundations of
Computer Science, pages 8-21. IEEE, 1978.

T. Johnson and D. Shasha. Utilization of B-
trees with inserts, deletes and modifies. In Pro-
ceedings of the 8th Symposium on Principles of
Database Systems, pages 235-246. ACM, 1989.

T. Johnson and D. Shasha. B-trees with inserts
and deletes: Why free-at-empty is better than
merge-at-half. Journal of Computer and System
Sciences, 47(1):45-76, 1993.

T. Johnson and D. Shasha. The performance of
current B-tree algorithms. ACM Transactions
on Database Systems, 18(1):51-101, 1993.

D. E. Knuth. The Art of Computer Program-
ming: Volume III. Addlson-Wesley, Reading
MA, 1973.

P. Lividas. File Structures: Theory and Prac-
tice. Prentice Hall, Englewood Cliffs NJ, 1990.

I. Oliver. Programming Classics: Implement-
ing the World's Best Algorithms. Prentice Hall,
Englewood Cliffs NJ, 1993.

B. J. Salzberg. File Structures: an Analytic
Approach. Prentice Hall, Englewood Cliffs N J,
1988.
N. Wirth. Algorithms + Data Structures :
Programs. Prentice Hall, Englewood Cliffs N J,
1976.

D. Wood. Data Structures, Algorithms, and
Performance. Addison-Wesley, Reading MA,
1993.

B. Zhang and M. Hsu. Unsafe operations in B-
trees. Acta Informatica, 26(5):421-438, 1989.

(a)

Data
/ \ left Anchor

left Neighbor /
nght Neighbor

Pointer to next leaf" (c) / / ~ - ' - ~ ' ~

Figure 2: height 4 trees (a) max imum (b) minimum
(c) a 'maximal ' tree under lazy deletion

A Appendix : 2-3+-trees

Figure 2(a) depicts the max imum 2-3+-trees of height
4, which references 54 keys. Any insertion into this
tree will cause a new root to be created. Figure 2(b)
is the minimum 2-3+-tree of height 4. Any deletion
from it would cause a sequence of merges culminating
in the collapse of the root, resulting in a height 3 tree
referencing 7 keys.

Trees for which the insertion of some key increases
its height are called maximal . Normally, a smallest
maximal 2-3+-tree of height 3 references 8 keys, and
would appear as Figure 2(b) plus one node after the
9th key is inserted and the new root added. The tree
in Figure 2(c), pared down through lazy deletion is
still maximal. An insert to its r ightmost node will
cause it to require a new root, even though the re-
suiting height 5 tree will reference only 9 keys.

38 S I G M O D R E C O R D , Vol. 24, No . 1, M a r c h 1995

