Hardware-Based Speculation

B Execute instructions along predicted execution
paths but only commit the results if prediction
was correct

m Finds parallelism among instructions beyond branches

B Instruction commit: allowing an instruction to
update the register file/memory when instruction
is no longer speculative

B Need an additional piece of hardware to
prevent any irrevocable action until an
instruction commits

® l.e. updating state or taking an execution

Reorder Buffer

B Reorder buffer — holds the result of instruction
between completion and commit

m Four fields:
= Instruction type: branch/store /register
m Destination field: register number
® Value field: output value

m Ready field: completed execution?

B Modify reservation stations:

m Operand source is now reorder buffer instead of
functional unit

Reorder Buffer

B |ssue:
m Allocate RS and ROB, read available operands

B Execute:

m Begin execution when operand values are available

B Write result:
= Write result and ROB tag on CDB

2 Commit:

= When ROB reaches head of ROB, update register

® When a mispredicted branch reaches head of ROB,
discard all entries

Reorder Buffer

B Register values and memory values are not
written until an instruction commits

® On misprediction:
m Speculated entries in ROB are cleared
m The Spectre security vulnerability arises because some
microstate may not be reset.
B Exceptions:
= Not recognized until it is ready to commit

m Because a misspeculated instruction should cause
exception

Dynamic Scheduling, Multiple Issue, and Speculation

B Modern microarchitectures:

® Dynamic scheduling + multiple issue + speculation

B Two approaches:

m Assign reservation stations and update pipeline control
table in half clock cycles

= Only supports 2 instructions/clock
m Design logic to handle any possible dependencies
between the instructions
B Issue logic is the bottleneck in dynamically
scheduled superscalars

Multiple Issue

® Examine all the dependencies among the
instructions in an issue “bundle”

m If dependences exist in bundle, in parallel
encode them assigning reservations stations.

® Also need multiple completion /commit

B To simplify RS allocation:

® Limit the number of instructions of a given class that
can be issued in a “bundle”, i.e. on FP, one integer,
one load, one store

Register Renaming

m Register renaming vs. reorder buffers

m Instead of virtual registers from reservation stations and reorder buffer, create
a single register pool (Skylake has 180+168l)
= Contains visible registers and virtual registers

= Also used for Simultaneous Multithreading
m Use hardware-based map to rename registers during issue
= WAW and WAR hazards are avoided
m Speculation recovery occurs by copying during commit
® Renaming is useful with multithreading

m Next lecture: how renaming works.

Integrated Issue and Renaming

® Combining instruction issue with register renaming:
m Issue logic pre-reserves enough physical registers for the bundle

m Issue logic finds dependencies within bundle, maps registers as
necessary

m Issue logic finds dependencies between current bundle and already in-
flight bundles, maps registers as necessary

Physical register assigned Instruction with physical Rename map
Instr. # Instruction or destination register numbers changes
1 add x1,x2,x3 p32 add p32,p2,p3 x1-> p32
2 sub x1,x1,x2 p33 sub p33,p32,p2 x1->p33
3 add x2 ,x1,x2 p34 add p34,p33,x2 x2->p34
4 sub x1,x3,x2 p35 sub p35,p3,p34 x1->p35
5 add x1,x1,x2 p36 add p36,p35,p34 x1->p36
6 sub x1,x3,x1 p37 sub p37,p3,p36 x1->p37

How Much?

B How much to speculate

m Misspeculation degrades performance and power
relative to no speculation

= May cause additional misses (cache, TLB)

m Prevent speculative code from causing higher costing
misses (e.g. L2)

B Speculating through multiple branches
m Complicates speculation recovery

B Speculation and energy efficiency

= Note: speculation is only energy efficient when it
improves performance

Skylake Pipeline (Speculative, Multiissue)

[Branch Pred J—-[Instruction Fetch Unit]
[L1 B | 32KB L1 I$ (8-way)]
{>2OB
5 [16B Predecode, Fetch Buf]
Cycles {6 x86 Instructions
[2x20 Instruction Queue]
4 s x86 Instructions
Mcode Cmplx] [Slmple] [Slmple] [Slmple] [Slmple
store Decode Decode Decode Decode Decode
4 HOpPS *4 HOpPS
3 45 pops
[1 5K pop Cache]—ref—[2x64 pop Decode Queue
HOops ‘1’6 HOpPSs
[Retire Unit]-29?[224 Entry ROB
uODS l
~14 180 Integer] [168 FP] [a8 Entry BR] [72 Entry] [56 Entry]
Registers Registers Order Buffer Load Buffer Store Buffer
cycles
(97 Entry Unified Scheduler]
1 PortO 1 Port1 1 Ports 1 Porte 1 Port2 1 Port3 1 Port4 1 Port7
ALU ALU Load Load
ALU ALU Store Store
B h =] h St St
| I s [e | I
I I I eas }| 648 }] I {648
DIV
SQRT ML SIMP 1 [L1 pTLB] 32KB L1 D$ (8-way)]
 — — 64B
SIMD SIMD
FMA FMA (L2 pTiB] [256KB L2 Cache (8-way) |

MISSPECULATION:
WASTED WORK ON THE INTEL CORE 17

Work wasted / Total work

40%

35%

30%

25%

20%

15%

b & & RO Q& R & R A Q
TP T ITFSTES & SRR
[CRIIRN S & & VS S g &
Q?o_ (o) *3,&
>

Data collected by Professor Lu Peng and student Ying Zhang at LSU.

