
Hardware-Based Speculation

n Execute instructions along predicted execution 
paths but only commit the results if prediction 
was correct
n Finds parallelism among instructions beyond branches

n Instruction commit: allowing an instruction to 
update the register file/memory when instruction 
is no longer speculative

n Need an additional piece of hardware to 
prevent any irrevocable action until an 
instruction commits
n I.e. updating state or taking an execution



Reorder Buffer

n Reorder buffer – holds the result of instruction 
between completion and commit

n Four fields:
n Instruction type:  branch/store/register
n Destination field:  register number
n Value field:  output value
n Ready field:  completed execution?

n Modify reservation stations:
n Operand source is now reorder buffer instead of 

functional unit



Reorder Buffer

n Issue:
n Allocate RS and ROB, read available operands

n Execute:
n Begin execution when operand values are available

n Write result:
n Write result and ROB tag on CDB

n Commit:
n When ROB reaches head of ROB, update register
n When a mispredicted branch reaches head of ROB, 

discard all entries



Reorder Buffer

n Register values and memory values are not 
written until an instruction commits

n On misprediction:
n Speculated entries in ROB are cleared
n The Spectre security vulnerability arises because some 

microstate may not be reset.

n Exceptions:
n Not recognized until it is ready to commit
n Because a misspeculated instruction should cause 

exception



Dynamic Scheduling, Multiple Issue, and Speculation

n Modern microarchitectures:
n Dynamic scheduling + multiple issue + speculation

n Two approaches:
n Assign reservation stations and update pipeline control 

table in half clock cycles
n Only supports 2 instructions/clock

n Design logic to handle any possible dependencies 
between the instructions

n Issue logic is the bottleneck in dynamically 
scheduled superscalars



Multiple Issue

n Examine all the dependencies among the 
instructions in an issue “bundle”

n If dependences exist in bundle, in parallel 
encode them assigning reservations stations.

n Also need multiple completion/commit
n To simplify RS allocation:

n Limit the number of instructions of a given class that 
can be issued in a “bundle”, i.e. on FP, one integer, 
one load, one store



Register Renaming
n Register renaming vs. reorder buffers

n Instead of virtual registers from reservation stations and reorder buffer, create 
a single register pool (Skylake has 180+168!)

n Contains visible registers and virtual registers
n Also used for Simultaneous Multithreading

n Use hardware-based map to rename registers during issue
n WAW and WAR hazards are avoided
n Speculation recovery occurs by copying during commit

n Renaming is useful with multithreading
n Next lecture: how renaming works.



Integrated Issue and Renaming
n Combining instruction issue with register renaming:

n Issue logic pre-reserves enough physical registers for the bundle
n Issue logic finds dependencies within bundle, maps registers as 

necessary
n Issue logic finds dependencies between current bundle and already in-

flight bundles, maps registers as necessary



How Much?

n How much to speculate
n Misspeculation degrades performance and power 

relative to no speculation
n May cause additional misses (cache, TLB)

n Prevent speculative code from causing higher costing 
misses (e.g. L2)

n Speculating through multiple branches
n Complicates speculation recovery

n Speculation and energy efficiency
n Note:  speculation is only energy efficient when it 

improves performance



Skylake Pipeline (Speculative, Multiissue)



MISSPECULATION:
WASTED WORK ON THE INTEL CORE I7

0%

5%

10%

15%

20%

25%

30%

35%

40%

PE
RL
BE
NC
H

BZ
IP2 GC

C
M
CF

GO
BM
K

HM
ME
R
SJE
NG

LIB
QU
AN
TU
M

H2
64
RE
F

OM
NE
TP
P
AS
TA
R

XA
LA
NC
BM
K

M
ILC

NA
M
D
DE
AL
II

SO
PL
EX

PO
VR
AY LB

M

SP
HI
NX
3

W
or

k 
w

as
te

d 
/ 

To
ta

l w
or

k

Data collected by Professor Lu Peng and student Ying Zhang  at LSU.


