
CS357: First Home Assignment
– Satisfiability –

This assignment is intended to be solved individually, but discussion via Piazza
is encouraged. Submit your report and any implementation files in an archive
via email to zeljic@stanford.edu with subject CS357 - Assignment 1. The
deadline is Sunday October 20th. For programming tasks in the assignment
you are free to use your programming language of choice.

1. N-Queens puzzle
The n-queens puzzle is the problem of placing n queens on an n×n chessboard
such that no two queens threaten each other. Two queens threaten each other if
they share a column, row or a diagonal. Below you can see an example solution,
for n = 8:

1. Describe the high-level constraints of the problem.

2. Consider how each kind of constraint is encoded into propositional logic
when using:
a) sparse encoding and
b) log-encoding

A sparse encoding uses a Boolean variable for every queen k at every position

1

mailto:zeljic@stanford.edu

i, j:

vki,j =

{
True, if kth queen is at position i,j on the board
False, otherwise

, 1 ≤ i, j, k ≤ n

A log-encoding represents each queen as a pair of integer positions x and y, so
for queen k at position i and j: vkx = i and vky = j, 1 ≤ i, j, k ≤ n. Integer values
would be encoded into propositional logic using their binary representation,
which takes O(log(n)) propositional variables, hence the name of the encoding.

1.1. Answer the following questions:
1. How many variables and clauses would be needed to represent the n-queen

problem using each encoding?
2. What are the advantages and disadvantages of each encoding?
3. Are there any redundant constraints in the problem formulation?
4. Are there any implicit constraints that can be added to the encoding?
5. Symmetry breaking - solutions that represent rotations of another solu-

tion are not interesting. What kind of constraints can be added to avoid
symmetric solutions?

1.2. Implementation
Implement a program, that encodes n-queens puzzle of into SAT using an en-
coding of your choice, where n is the input parameter. The program should
generate a SAT formula in the DIMACS-cnf format.

2. Implement DPLL algorithm
Implement the DPLL algorithm in a language of your choice. Your implemen-
tation should take a file name pointing to a file in DIMACS-cnf format as input.
The program should parse the input file and solve the problem by applying the
rules of the DPLL algorithm. The code should be well documented.

For the report, note all the different design choices that you had to make
during the implementation.

3. Tying it all together
1. Use your implementation of the DPLL algorithm to solve the n queens

problem for various sizes of n. What is the highest n of the puzzle that
your implementation can solve within 5 minutes?

2. Play around with the implementation and the encoding and document how
different choices impact the performance. Can you improve the size of n
the your implementation can solve within 5 minutes by modifying either
the encoding or the program? Discuss your observations in the report.

2

http://www.satcompetition.org/2009/format-benchmarks2009.html

While playing around, it might be interesting to look at the number of times
different DPLL rules are applied. In particular, the number of split rule appli-
cations is a good metric for the size of the search space explored.

4. (Optional) Phase transition
Given a number of variables n and a ratio of clauses to variables r, generate
random 3-SAT formulas. For a formula with n variables, the number of clauses
should be n × r. The distribution of variables and polarities in the generated
formula should be uniform, meaning that all variables are equally likely (i.e.
1 : n) and for each variable occurrence positive and negative literals are equally
likely (i.e. 1 : 2).

Choose a number of variables that your implementation can solve, based
on the experiments with the encoding of the n-queens puzzle. For the chosen
number of variables n, vary the values of the clause-to-variables ratio from 2 to
8, in increments of 0.2. For each value of the ratio generate 25 random 3-SAT
formulas and solve them with some timeout (10 minutes should be sufficient).
Count the number of SAT and UNSAT formulas for each value of the clause-to-
variable ratio and plot the average run-times (or alternatively average number
of splits), for each value of the ratio. What can you observe? Do you have an
intuitive explanation for the observations?

Instead of using your implementation you can use a state-of-the-art SAT
solver, but the size of formulas to be generated will need to be considerably
larger, and even then you might need to plot different run time statistics to
observe the effect.

3

	1. N-Queens puzzle
	1.1. Answer the following questions:
	1.2. Implementation

	2. Implement DPLL algorithm
	3. Tying it all together
	4. (Optional) Phase transition

