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Proofs

I Why proofs?

I What do we prove?

I What is the proof engine of SAT solvers?



Resolution Proof System

I Axioms: Clauses of the formula

I Inference rule:

c ∨ l d ∨ ¬l
c ∨ d

Resolution

I Refutation ends with derivation of an empty clause - �



Example

(x ∨ y) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z) ∧ (¬x ∨ ¬z)

Two representations:

I Annotated list

I DAG
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Resolution complexity

I Number of clauses in a refutation is its size/length.

I Length of refuting φ - length of the shortest refutation

I Yields lower bound on the solving time using CDCL

I Upper bound: exp(O(N))

I Lower bound: exp(Ω(N))



Known provably exponential classes

Pigeon-hole principle formulas / Dirichlet’s box principle

I Place N+1 pigeons into N holes. No hole may hold more than
one pigeon.

I Variables: pi ,j - pigeon i belongs to hole j

I Every pigeon gets a hole

pi ,1 ∨ pi ,2 ∨ . . . ∨ pi ,j , ∀i ∈ {1, 2, . . . ,N + 1}

I Every hole gets at most one pigeon

¬pi ,j ∨ ¬pi ′,j , ∀i , i ′ ∈ {1, 2 . . . ,N + 1},∀j ∈ {1, 2 . . . ,N}



PHP

Adding extra axioms:

I Functionality axioms - no pigeon gets two holes:

¬pi ,j ∨ ¬pi ,j ′ , ∀j , j ′ ∈ {1, 2, . . . ,N + 1}

I Onto axioms - every hole gets a pigeon:

p1,j ∨ p2,j ∨ . . . ∨ pN+1,j , ∀i ∈ {1, 2, . . . ,N + 1}

Does not help - Resolution cannot count

Many other examples - Random k-CNF, Tseitin graphs, etc.



SAT solvers expect more

Extended Resolution [Tseitin]

I extension rule + resolution rule

I Extension:

x := a ∧ b ≡ (x ∨ ¬a ∨ ¬b) ∧ (¬x ∨ a) ∧ (¬x ∨ b)

I Exponentially stronger system than just resolution

I No known results on exponential lower bounds

I Pre-/in-processing steps are challenging to capture

I Not compact enough, keeps deriving consequences



Redundancy-based clausal proofs

Proof:

Sequence of clauses, ending with the empty clause, that are
redundant w.r.t. φ

I Allows addition and deletion of redundant clauses

I All derivations satisfy efficiently checkable syntactic criterion

I DRAT is the de facto standard nowadays

I Equivalent to Extended Resolution



Hierarchy of Redundant properties



Classes of redundant properties:

T - Tautology:

(p ∨ ¬p)

AT - Asymmetric tautology

I ALA(φ,C ) - Asymmetric literal addition, repeat until fix-point:

∃(C ∨ l) ∈ φ\{C} then C := C ∨ ¬l

I AT - ALA(φ,C ) has property T

I a.k.a. RUP - reverse unit propagation:

� ∈ BCP(φ,¬C )
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Classes of redundant properties:

RT - Resolution Tautology (a.k.a. blocked clauses):

1. C = (l1 ∨ l2 ∨ ... ∨ ln ∨ l) has property T or

2. exists l ∈ C s.t. for each clause C ′ ∈ φ : ¬l ∈ C ′, every
resolvent of C and C ′ over l has property T

RAT - Resolution Asymmetric Tautology

1. C = (l1 ∨ l2 ∨ ... ∨ ln ∨ l) has property AT or

2. exists l ∈ C s.t. for each clause C ′ ∈ φ : ¬l ∈ C ′, every
resolvent of C and C ′ over l has property AT
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Example

φ : (a ∨ b) ∧ (b ∨ c) ∧ (¬b ∨ ¬c)

Which redundant properties have the following
clauses:

I a ∨ ¬a

T (AT, RT, RAT)

I a ∨ ¬c AT, RT, (RAT)

I ¬a ∨ c RAT
Note: For RAT, all resolvents over one literal should have AT
property, this is the case for resolvents over a
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DRAT - Deletion RAT

I RAT clauses are expressive enough!

I Adding RAT clauses preserves satisfiability

I Deleting RAT clause preserves unsatisfiability

I Clauses are efficiently checkable (using BCP)

I Overall process is still expensive

I Allows trimming of formulas

I Optimized proofs

I Pythagorean Triples: 200TB resolution proof takes 67GB in
DRAT



Example

Consider the problem of:

Avoiding monochromatic solutions of the equation:

a + b = c, with a < b < c ,

while coloring the natural numbers with two colors.

I Smallest counter-example: {1, 2, 3, . . . , 9}
I Encode into sat using 9 variables:

vi =

{
T , if i is red

F , if i is blue
i ∈ {1, 2, . . . , 9}



Example
p cnf 9 32

1 2 3 0 -1 -2 -3 0

1 3 4 0 -1 -3 -4 0

1 4 5 0 -1 -4 -5 0

2 3 5 0 -2 -3 -5 0

1 5 6 0 -1 -5 -6 0

2 4 6 0 -2 -4 -6 0

1 6 7 0 -1 -6 -7 0

2 5 7 0 -2 -5 -7 0

3 4 7 0 -3 -4 -7 0

1 7 8 0 -1 -7 -8 0

2 6 8 0 -2 -6 -8 0

3 5 8 0 -3 -5 -8 0

1 8 9 0 -1 -8 -9 0

2 7 9 0 -2 -7 -9 0

3 6 9 0 -3 -6 -9 0

4 5 9 0 -4 -5 -9 0

DRAT proof:

1 4 0

1 0

4 0

0

I 512 possible
partitions

I 4 line proof
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Unsat cores

Unsatisiable core of formula φ

A subset of φ that is still unsatisafiable.

I A core is minimal if removing any conjunct turns it satisfiable.

I How can we extract unsat cores?

I How can we minimize them?

I What can they be used for?

I In practice: https://rise4fun.com/Z3/smtc_core

https://rise4fun.com/Z3/smtc_core


Craig interpolation

Craig interpolant:

Suppose formula α ∧ β is unsatisafiable. There exists a formula I
over literal in both α and β s.t.:

1. α→ I and

2. I ∧ β is unsatisafiable.

I Explanation genralization / Conflict minimization

I In Model Checking: discovering relevant predicates and
abstractions
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