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First-Order Logic: Motivation

Propositional logic is not powerful enough for many applications.
For example, propositional logic cannot reason about natural numbers directly.

In general, to reason about infinite domains or to express properties which are
more abstract, a more expressive logic is required.

First-order logic is the most common logic of choice for handling tasks that
require more power than that offered by propositional logic.
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Example

2-bit counter property specification:
z1 4> =x1 A z0 <> x0 Ayl <> (x1 @ x0) A y0 +» —x0

n-bit counter specification requires a formula of size O(n).

Using first-order logic, we can express the specification using a formula whose
size is constant for all n:

Z = X +pn 2Ny = X +2n] 1

Here, the intended meaning is that variables x, y, and z range over the set
[0..2" — 1] and +[or} indicates addition modulo 2".

When using first-order logic, part of our task is to specify the meaning of the
symbols we are using.



First-Order Logic: Syntax

As with propositional logic, expressions in first-order logic are made up of
sequences of symbols.

Symbols are divided into logical symbols and non-logical symbols or
parameters.

Logical Symbols

> Parentheses: (, )
» Propositional connectives: —, —
» Variables: vi, v, ...

» Universal quantifier: V

Parameters

» Equality symbol (optional): =

> Predicate symbols: e.g. p(x), x >y

» Constant symbols: e.g. 0, John, w

» Function symbols: e.g. f(x), x +y, X +p ¥



First-Order Logic: Syntax

Abbreviations

» Other propositional connectives: V, A, >

> Existential quantifier: 3x p(x) < =V x —p(x)
Each predicate and function symbol has an associated arity, a natural number
indicating how many arguments it takes.
Equality is a special predicate symbol of arity 2.
Constant symbols can also be thought of as functions of arity 0.

A first-order language must first specify its parameters.



First-Order Languages: Examples

Propositional Logic

» Equality: no
» Predicate symbols: Ai, Ao, ...
» Constant symbols: none

» Function symbols: none
Set Theory

» Equality: yes
» Predicate symbols: €
» Constant symbols:

» Function symbols: none



First-Order Languages: Examples

Elementary Number Theory

» Equality: yes
> Predicate symbols: <
» Constant symbols: 0

» Function symbols: S (successor), +, x, exp



First-Order Logic: Terms

The first important concept on the way to defining well-formed formulas is that
of terms.

For each function symbol 7 of arity n, we define a term-building operation F:
Fr(aa,...,an) = faq,...,an
Note that we are using prefix notation to avoid ambiguity.

The set of terms is the set of expressions generated from the constant symbols
and variables by the JF; operations.

Terms are expressions which name objects.
Theorem

The set of terms is freely generated from the set of variables and constant
symbols by the F; operations.



First-Order Logic: Formulas

Atomic Formulas

An atomic formula is an expression of the form: Pti, ..., t, where P is a
predicate symbol of arity n and t1,...,t, are terms.

If the language includes the equality symbol, we consider the equality symbol
as a predicate of arity 2.

Formulas

We define the following formula-building operations:
> & () = ()
» £ (a,B)=(a—pB)
» Qi(a) =Vvia

The set of well-formed formulas (wffs or just formulas) is the set of expressions

This set is also freely generated.



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. Ve



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes
2. V2 + V3



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes
2. v+ v3 no
3. +vov3



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes

2. v+ v3 no

3. +ww yes
atomic formulas?

1. = 6Xp+ V10V25V3



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes

2. Vo + v3 no

3. +ww yes

atomic formulas?

1. =exp+viOwSvz yes: (vi +0)? = S(v3)
2. -1 = W



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes
2. %] + V3 no
3. +ww yes
atomic formulas?
1. =exp+viOwSvz yes: (vi +0)? = S(v3)
2. - = Wwnw no
well-formed formulas?

1. - = WV



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes
2. %] + V3 no
3. +ww yes
atomic formulas?
1. =exp+viOwSvz yes: (vi +0)? = S(v3)
2. - = Wwnw no
well-formed formulas?

1. -1 = Wwnw no
2. (ﬁ = V2V3)



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes
2. %] + V3 no
3. +ww yes
atomic formulas?
1. =exp+viOwSvz yes: (vi +0)? = S(v3)
2. - = Wwnw no
well-formed formulas?

1. -1 = Wwnw no
2. (m=wvwn) yes: vo # v3
3. ><0V1



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes
2. %] + V3 no
3. +ww yes
atomic formulas?
1. =exp+viOwSvz yes: (vi +0)? = S(v3)

2. - = Wwnw no

well-formed formulas?

1. -1 = Wwnw no

2. (m=wvwn) yes: vo # vs
3. x0vw no

4, Vvl = ><OV1V1



Formula Examples

In the language of elementary number theory introduced above, which of the
following are terms?

1. w yes
2. %] + V3 no
3. +ww yes
atomic formulas?
1. =exp+viOwSvz yes: (vi +0)? = S(v3)

2. - = Wwnw no

well-formed formulas?

1. -1 = Wwnw no

2. (m=wvwn) yes: vo # vs

3. x0vw no

4. Yvi =x0vivi  yes: Vvi (0 X vi = v1)



Free and Bound Variables

We define by recursion what it means for a variable x to occur free in a wff «:

» |If « is an atomic formula, then x occurs free in « iff x occurs in .
> x occurs free in () iff x occurs free in .
> x occurs free in (o — [3) iff x occurs free in « or in f3.

> x occurs free in Vv; o iff x occurs free in a and x # v;.

To make this definition precise, we would need to define a recursive function
and make use of the recursion theorem and the fact that wffs are freely
generated.

If Vv; appears in «, then v; is said to be bound in .

Note that a variable can both occur free and be bound in «.. Because
this can be confusing, we typically require the set of free and bound
variables to be disjoint.

If no variable occurs free in a wff «, then « is a sentence.



First-Order Logic: Semantics

In propositional logic, the truth of a formula was determined by a truth
assignment over the propositional symbols.

In first-order logic, we use a model (also known as a structure) to determine
the truth of a formula.

A signature is a set of non-logical symbols (predicates, constants, and

functions). Given a signature ¥, a model M of X consists of the following:

1. A nonempty set called the domain of M, written dom(M). Elements of
the domain are called elements of the model M.

N

. A mapping from each constant c in ¥ to an element ¢ of M.

w

. A mapping from each n-ary function symbol f in & to £V, an n-ary
function from [dom(M)]" to dom(M).

4. A mapping from each n-ary predicate symbol p in X to p" C [dom(M)]",

an n-ary relation on the set dom(M).



Example

Consider the signature corresponding to the language of set theory which has a
single predicate symbol € and a single constant symbol ().

A possible model M for this signature has dom(M) = N, the set of natural
numbers, €"=<, and 0" = 0.

Now consider the sentence 9 xVy —y € x.



Example

Consider the signature corresponding to the language of set theory which has a
single predicate symbol € and a single constant symbol ().

A possible model M for this signature has dom(M) = N, the set of natural
numbers, €"=<, and 0" = 0.

Now consider the sentence 9 xVy —y € x.

What does this sentence mean in this model?



Example

Consider the signature corresponding to the language of set theory which has a
single predicate symbol € and a single constant symbol ().

A possible model M for this signature has dom(M) = N, the set of natural
numbers, €"=<, and 0" = 0.

Now consider the sentence 9 xVy —y € x.
What does this sentence mean in this model?

The translation of the sentence in the model M is that there is a natural
number x such that no other natural number is smaller than x.



Example

Consider the signature corresponding to the language of set theory which has a
single predicate symbol € and a single constant symbol ().

A possible model M for this signature has dom(M) = N, the set of natural
numbers, €"=<, and 0" = 0.

Now consider the sentence 9 xVy —y € x.
What does this sentence mean in this model?

The translation of the sentence in the model M is that there is a natural
number x such that no other natural number is smaller than x.

Is this sentence true in the model?



Example

Consider the signature corresponding to the language of set theory which has a
single predicate symbol € and a single constant symbol ().

A possible model M for this signature has dom(M) = N, the set of natural
numbers, €"=<, and 0" = 0.

Now consider the sentence 9 xVy —y € x.
What does this sentence mean in this model?

The translation of the sentence in the model M is that there is a natural
number x such that no other natural number is smaller than x.

Is this sentence true in the model?

Since 0 has this property, the sentence is true in this model.



First-Order Logic: Semantics

We will often use a shorthand when discussing both signatures and models.
The signature shorthand lists each symbol in the signature.

The model shorthand lists the domain and the interpretation of each symbol of
the signature.

The signature for set theory can thus be described as (€, 0)), and the above
model as (N, <, 0).



First-Order Logic: Semantics

Given a model M, a variable assignment s is a function which assigns to each
variable an element of M.

Given a wff ¢, we say that M satisfies ¢ with s and write =11 ¢[s] if ¢ is true
in the model M with variable assignment s.

To define this formally, we first define the extension 5: T — dom(M), a
function from the set T of all terms into the domain of M:

1. For each variable x, 5(x) = s(x).
2. For each constant symbol c, 5(c) = c".

3. If t1,...,t, are terms and f is an n-ary function symbol, then
5(ft,..., t) = FM(3(t1),...,3(tn)).

The existence of a unique such extension 5 follows from the recursion theorem
and the fact that the terms are freely generated.

Note that s depends on both s and M.



First-Order Logic: Semantics

Atomic Formulas

1. Eu= tito]s] iff 5(t1) = 5(t2).
2. For an n-ary predicate symbol P,
=um Pty ... to[s] iff (5(t), ..., 5(t)) € PM.
Other wffs

1. =um (—)[s] iff FEm ¢[s].

2. Ewm (¢ — )[s] iff m Ps] or Em ¥]s].

3. Em Vx ¢[s] iff =m ¢[s(x|d)] for every d € dom(M).
s(x|d) signifies the function which is the same as s everywhere except at x
where its value is d.

Again, the well-formedness of this definition depends on the recursion theorem
and the fact that wffs are freely generated.



Logical Definitions

Suppose ¥ is a signature. A > -formula is a well-formed formula whose
non-logical symbols are contained in .

Let I' be a set of >-formulas. We write =y ['[s] to signify that =y ¢[s] for
every ¢ € I,

If I is a set of X-formulas and ¢ is a X-formula, then I logically implies ¢,
written [ |= ¢, iff for every model M of ¥~ and every variable assignment s, if
= [[s] then =y ¢]s].

We write ¢) |= ¢ as an abbreviation for {¢'} |= ¢.

= ¢ and ¢ = .

1 and ¢ are logically equivalent (written ¢ ==|¢) iff ¢

A X-formula ¢ is valid, written = ¢ iff ) |= ¢ (i.e. =m ¢[s] for every M and s).



