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Logical Definitions

Suppose Σ is a signature. A Σ-formula is a well-formed formula whose
non-logical symbols are contained in Σ.

Let Γ be a set of Σ-formulas. We write |=M Γ[s] to signify that |=M φ[s] for
every φ ∈ Γ.

If Γ is a set of Σ-formulas and φ is a Σ-formula, then Γ logically implies φ,
written Γ |= φ, iff for every model M of Σ and every variable assignment s, if
|=M Γ[s] then |=M φ[s].

We write ψ |= φ as an abbreviation for {ψ} |= φ.

ψ and φ are logically equivalent (written ψ |= |=φ) iff ψ |= φ and φ |= ψ.

A Σ-formula φ is valid , written |= φ iff ∅ |= φ (i.e. |=M φ[s] for every M and s).



Examples

Suppose that P is a unary predicate and Q a binary predicate. Which of the
following are true?

1. ∀ v1 Pv1 |= Pv2

True
2. Pv1 |= ∀ v1 Pv1 False
3. ∀ v1 Pv1 |= ∃ v2 Pv2 True
4. ∃ x ∀ y Qxy |= ∀ y ∃ x Qxy True
5. ∀ x ∃ y Qxy |= ∃ y ∀ x Qxy False
6. |= ∃ x (Px → ∀ y Py) True

Which models satisfy the following sentences?

1. ∀ x ∀ y x = y Models with exactly one element.
2. ∀ x ∀ y Qxy Models (A,Q) where Q = A× A.
3. ∀ x ∃ y Qxy Models (A,Q) where dom(Q) = A.
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Invariance of Truth Values

Theorem

Suppose s1 and s2 are variable assignments over a model M which agree at all
variables (if any) which occur free in the wff φ. Then |=M φ[s1] iff |=M φ[s2].

Proof

The proof is by induction on well-formed formulas φ.

1. If φ is an atomic formula, then all variables in φ occur free. Thus s1 and s2

agree on all variables in φ. It follows that s1(t) = s2(t) for each term t in
φ (technically we should prove this by induction too). The result follows.

2. If φ is (¬α) or (α→ β), the result is immediate from the inductive
hypothesis.

3. Suppose φ = ∀ x ψ. The variables free in φ are the same as those free in ψ
except for x . Thus, for any d in dom(M), s1(x |d) and s2(x |d) agree at all
variables free in ψ. The result follows from the inductive hypothesis.

As a corollary of this theorem, we have that for sentences, satisfaction is
independent of the variable assignment.
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Definability Within a Model

Consider a fixed model M.

If φ is a formula whose free variables are among v1, . . . , vk , and a1, . . . , ak are
elements of M, then we write

|=M φ[[a1, . . . , ak ]]
to

mean that M satisfies φ with some (and hence every) variable assignment s
such that s(vi ) = ai .

We can then associate with every such formula φ the k-ary relation:

{〈a1, . . . , ak〉 | |=M φ[[a1, . . . , ak ]]} .

We say that this is the relation defined by φ in M.

In general, a k-ary relation on dom(M) is said to be definable in M iff there is
a formula which defines it there.



Example

Consider the model (N , 0, S ,+,×).

I The ordering relation {〈m, n〉 |m < n} is defined by ∃ v3 (v1 + Sv3 = v2).

I For any natural number n, {n} is definable. For example, {2} is defined by
v1 = SS0.

I The set of primes is definable in (N , 0,S ,+,×):

1 < v1 ∧ ∀ v2 ∀ v3 (v1 = v2 × v3 → v2 = 1 ∨ v3 = 1).

where < can be defined as above, and 1 is an abbreviation for S0.

Notice that because there are uncountably many relations on N and only
countably many possible defining formulas, some relations on N are not
definable.



Proofs

What is the meaning of the following statement?:

Γ |= φ

In propositional logic, it means that every truth assignment which makes every
formula in Γ true also makes φ true.

In first-order logic, it means that every model and variable assignment which
makes every formula in Γ true also makes φ true.

How do we demonstrate or convince a skeptic of these facts?

In propositional logic, a skeptic could use a truth table to check whether Γ |= φ.

In first-order logic, no such method exists: we cannot, in general, enumerate all
possible models and variable assignments.

Instead, we rely on the notion of a formal mathematical proof.
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What is a Proof?

A proof is a convincing argument made up of a finite sequence of fixed
indisputable steps.

Mathematicians, including the author of the textbook, rely on proofs to
convince their audience of the mathematical truth of a proposition.

For the most part, proofs are arguments about mathematical objects, but are
not mathematical objects themselves. Let’s call these “informal” proofs.

In logic, because part of our purpose is to study proofs themselves, we will
define proofs that are themselves mathematical objects. We refer to such
proofs as formal proofs or deductions.

Deductions are built from axioms, facts which we accept without proof,
assumptions, facts assumed to be true for the purpose of the deduction, and
rules of inference, an agreed-upon set of rules for creating new facts from old.
Any fact that can be derived in this manner is a (formal) theorem.

A particular choice of axioms and rules of inference is often referred to as a
calculus.



Proofs

Note that because a proof is finite and each step conforms to a pre-determined
set of rules, the question of whether a given sequence of steps is a valid proof is
decidable.

Thus, a proof is an effective mechanism for convincing a skeptic.

The interplay of formal and informal proofs is a potential source of confusion,
especially since we often use informal proofs to prove things about formal
proofs! To avoid confusion, remember:

I An informal proof is a convincing argument about mathematical objects.

I A formal proof or deduction is a mathematical object itself : a sequence of
theorems obtained using a specific set of axioms, assumptions, and rules of
inference.

Remember that an “informal” proof must still be convincing!



A Deductive Calculus for First-Order Logic

A calculus whose axioms are valid first-order formulas and whose rules of
inference preserve first-order validity can be used to derive theorems which are
valid first-order formulas.

There are many possible choices for axioms and rules of inference.

We present a calculus for first-order logic with an infinite number of axioms,
which we will denote as Λ, and which uses only a single rule of inference,
known as modus ponens.

This rule states that given formulas α and α→ β we may infer β.

Rules of inference are often written in the following format with the given
formulas above and the deduced formula below:

α, α→ β

β
.



A Deductive Calculus

A deduction of φ from Γ is a sequence 〈α0, . . . , αn〉 of formulas such that
αn = φ and for each i ≤ n either

I αi is in Γ ∪ Λ, or

I for some j and k less than i , αi is obtained by modus ponens from αj and
αk (i.e. αk = αj → αi ).

If such a deduction exists, we say that φ is deducible from Γ or that φ is a
theorem of Γ, and we write Γ ` φ.

The set of theorems of Γ is the set generated from Γ ∪ Λ by modus ponens.



A Deductive Calculus

A set of formulas ∆ is closed under modus ponens iff whenever α and α→ β
are in ∆, so is β.

Our definition of deduction gives rise to the following induction principle.

Induction Principle

Suppose that S is a set of wffs that includes Γ ∪ Λ and is closed under modus
ponens. Then S contains every theorem of Γ.



Axioms

A wff φ is a generalization of ψ iff for some variables x1, . . . , xn, where n ≥ 0,
we have φ = ∀ x1 · · · ∀ xn ψ.

The axioms Λ are made up of all generalizations of wffs of the following forms,
where x and y are variables and α and β are wffs.

1. Tautologies

2. ∀ x α→ αx
t , where t is substitutable for x in α;

3. ∀ x (α→ β)→ (∀ x α→ ∀ x β);

4. α→ ∀ x α, where x does not occur free in α;

5. x = x ;

6. x = y → (α→ α′), where α is atomic and α′ is obtained from α by
replacing x in zero or more places by y .

Note that the axioms depend on the definition of a well-formed formula which
requires that a language be specified. The last two items are only included if
the language includes equality.



Axioms

Tautologies

Axiom group 1 consists of tautologies. These are the wffs obtainable from
tautologies of propositional logic by replacing each propositional symbol by a
wff of the first-order language.

For example, consider the propositional tautology

(A→ ¬B)→ (B → ¬A).

A corresponding axiom is the formula

∀ x [(∀ y ¬Py → ¬Px)→ (Px → ¬∀ y ¬Py)].

There is a more direct way to view the relationship of first-order and
propositional logic.

A first-order formula is prime if it is atomic or of the form ∀ x α.

First-order formulas correspond exactly to propositional logic formulas in which
the set of propositional symbols is taken to be all prime first-order formulas.



Tautologies

By viewing first-order formulas as instances of propositional logic formulas, all
propositional notions are also defined for first-order formulas.

Thus, the notions of tautology , tautological consequence, and tautological
implication are thus directly applicable to first-order formulas.

Theorem

If Γ tautologically implies φ, then Γ logically implies φ.

Note that the converse fails. Theorem

Γ ` φ iff Γ ∪ Λ tautologically implies φ.

Proof

⇒: Follows from the fact that modus ponens is propositionally valid.

⇐: By the compactness theorem for propositional logic, there is a finite subset
∆ = {δ1, . . . , δm} of Γ ∪ Λ which tautologically implies φ. Thus,
δ1 → · · · → δm → φ is a tautology and hence is in Λ. By applying modus
ponens m times, we obtain φ. 2
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Substitution

The second axiom group contains formulas of the form ∀ x α→ αx
t .

The notation αx
t denotes the expression obtained from α by replacing x ,

wherever it occurs free in α, by the term t.

We must also impose the restriction that t be substitutable for x in α.
Informally, t is substitutable for x in α if no variables from t become bound
when the substitution is made. Formally, this is defined as follows.

I For atomic α, t is substitutable for x in α.

I t is substitutable for x in (¬α) iff it is substitutable for x in α, and t is
substitutable for x in (α→ β) iff it is substitutable for x in both α and β.

I t is substitutable for x in ∀ y α iff either
I x does not occur free in ∀ y α, or
I y does not occur in t and t is substitutable for x in α.



Example

For convenience, we repeat the first three axiom groups here:

1. Tautologies

2. ∀ x α→ αx
t , where t is substitutable for x in α;

3. ∀ x (α→ β)→ (∀ x α→ ∀ x β);

We will give a deduction of: ` ∀ x (Px → ∃ y Py).

1. ∀ x [(∀ y ¬Py → ¬Px)→ (Px → ¬∀ y ¬Py)] Tautology
2. (1)→ [∀ x (∀ y ¬Py → ¬Px)→ ∀ x (Px → ¬∀ y ¬Py)] Axiom group 3
3. ∀ x (∀ y ¬Py → ¬Px)→ ∀ x (Px → ¬∀ y ¬Py) MP(1, 2)
4. ∀ x (∀ y ¬Py → ¬Px) Axiom group 2
5. ∀ x (Px → ¬∀ y ¬Py) MP(4, 3)



Reasoning About Deductions

Recall that our goal is to have a method to convince skeptics that Γ ` φ.

If we can get the skeptic to believe in our deductive system (we’ll tackle that
issue shortly when we discuss soundness), then all we have to do is give a
deduction of φ from Γ.

However, as you might imagine from the previous example, a deduction can be
tedious and lengthy. For this reason, we introduce a number of shortcuts which
can be used to show that Γ ` φ without giving an explicit deduction.

In each case we will have to justify that the given shortcut or rule is just as
good as giving a deduction.



Generalization Theorem

Theorem

If Γ ` φ and x does not occur free in any formula in Γ, then Γ ` ∀ x φ.

Theorem (rule T)

If Γ ` α1, . . . , Γ ` αn and {α1, . . . , αn} tautologically implies β, then Γ ` β.
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Deduction Theorem

Theorem

If Γ ∪ {γ} ` φ then Γ ` (γ → φ).

Proof

Γ ∪ {γ} ` φ iff Γ ∪ {γ} ∪ Λ tautologically implies φ
iff Γ ∪ Λ tautologically implies γ → φ
iff Γ ` (γ → φ).

2

Corollary (contraposition)

Γ ∪ {φ} ` ¬ψ iff Γ ∪ {ψ} ` ¬φ.

A set of formulas is inconsistent iff for some wff β, both β and ¬β are
theorems of the set.

Corollary (reductio ad absurdum)

If Γ ∪ {φ} is inconsistent, then Γ ` ¬φ.
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Example

Often it is easiest to work backward. Consider showing that

` ∃ x ∀ y φ→ ∀ y ∃ x φ.

By
the deduction theorem, it suffices to show that

∃ x ∀ y φ ` ∀ y ∃ x φ.
By

the generalization theorem, it suffices to show that

∃ x ∀ y φ ` ∃ x φ,

which is equivalent to

¬∀ x ¬∀ y φ ` ¬∀ x ¬φ.
By

contraposition, it thus suffices to show that

∀ x ¬φ ` ∀ x ¬∀ y φ.

And again, by generalization, it suffices to show that

∀ x ¬φ ` ¬∀ y φ.
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To show

∀ x ¬φ ` ¬∀ y φ,
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is
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But this is easy to see, since

∀ x ¬φ ` ¬φ and
∀ y φ ` φ.
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Generalization on Constants

Theorem

Suppose Γ ` φ and c is a constant symbol which does not occur in Γ. Then
there is a variable y which does not occur in Γ such that Γ ` ∀ y φc

y .
Furthermore, there is a deduction of ∀ y φc

y in which c does not occur.

Proof

Let 〈α0, . . . , αn〉 be a deduction of φ from Γ. Let y be a variable which does
not occur in any αi . We claim that

〈
(α0)cy , . . . , (αn)cy

〉
is a deduction from Γ of

φc
y .

I Case 1: αk ∈ Γ. Then c does not occur in αk , so (αk)cy = αk , which is in
Γ.

I Case 2: αk ∈ Λ. A careful examination of the axioms reveals that if
αk ∈ Λ, then (αk)cy must also be in Λ.

I Case 3: αk is obtained by modus ponens from αi and αj . It follows that
(αk)cy is obtained by modus ponens from (αi )

c
y and (αj)

c
y .

It follows from the generalization theorem that there is a deduction of ∀ y φc
y ,

and it is not hard to see that c does not occur in the deduction. 2
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Corollaries

Corollary

If Γ ` φx
c , where c does not occur in Γ or in φ, then Γ ` ∀ x φ, and there is a

deduction in which c does not occur.

Corollary (rule EI)

If Γ ∪ {φx
c} ` ψ and c does not occur in any of Γ, φ, or ψ, then

Γ ∪ {∃ x φ} ` ψ, and there is a deduction in which c does not occur.

Proof

By contraposition, we have Γ ∪ {¬ψ} ` ¬φx
c .

By the above corollary, it follows that Γ ∪ {¬ψ} ` ∀ x ¬φ.

Applying contraposition again, yields Γ ∪ {∃ x φ} ` ψ.
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Alphabetic Variants

An alphabetic variant of a formula φ is a formula φ′ obtained by renaming
some of the bound variables of φ. This is useful when we want to substitute t
into φ, but t is not substitutable.

Theorem (Existence of Alphabetic Variants)

Let φ be a formula, t a term, and x a variable. Then there exists φ′ such that

1. φ ` φ′ and φ′ ` φ; and

2. t is substitutable for x in φ′.

Proof

We construct φ′ by recursion on φ.

I If φ is atomic, φ′ = φ

I (¬φ)′ = (¬φ′) and (φ→ ψ)′ = (φ′ → ψ′)

I (∀ y φ)′ = ∀ z (φ′)yz , where z does not appear in φ′ or t or x .

It is not hard to show that the two conditions are satisfied by this definition. 2
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Equality

Assuming the language includes equality, the following are the standard set of
common facts about equality. Their proofs are straightforward.

1. Reflexivity: ` ∀ x x = x .

2. Symmetry: ` ∀ x ∀ y (x = y → y = x).

3. Transitivity: ` ∀ x ∀ y ∀ z (x = y → y = z → x = z).

4. Substitutivity in predicates: if P is an n-place predicate symbol, then
` ∀ x1 . . .∀ xn ∀ y1 . . .∀ yn (x1 = y1 → · · · → xn = yn → Px1 . . . xn →
Py1 . . . yn).

5. Substitutivity in functions: if f is an n-place function symbol, then
` ∀ x1 . . .∀ xn ∀ y1 . . .∀ yn (x1 = y1 → · · · → xn = yn → fx1 . . . xn =
fy1 . . . yn).



Syntactic strategies

Often, a strategy for showing the existence of a deduction can be chosen by
looking at the syntax of the formula to be deduced.

I Suppose φ = (ψ → θ). Then it is sufficient (and always possible) to show
that Γ ∪ {ψ} ` θ

I Suppose that φ is ∀ x ψ. If x does not occur free in Γ, then it will suffice
to show that Γ ` ψ. If x does occur free in Γ, then an alphabetic variant
can be constructed where x is renamed to a variable that doesn’t occur
free in Γ.

I Suppose φ is the negation of another formula.
I If φ = ¬(ψ → θ), then it suffices (by rule T) to show that Γ ` ψ and

Γ ` ¬θ.
I If φ = ¬¬ψ, then it suffices to show Γ ` ψ.
I If φ = ¬∀ x ψ, then it suffices to show that Γ ` ¬ψx

t , where t is
substitutable for x in ψ. Unfortunately, this is not always possible.

As an example of when the last strategy fails, consider ¬∀ x ¬(Px → ∀ y Py).
It is true that ` ¬∀ x ¬(Px → ∀ y Py), but for every term t, 6 ` (Pt → ∀ y Py).



Syntactic strategies

Often, a strategy for showing the existence of a deduction can be chosen by
looking at the syntax of the formula to be deduced.

I Suppose φ = (ψ → θ). Then it is sufficient (and always possible) to show
that Γ ∪ {ψ} ` θ

I Suppose that φ is ∀ x ψ. If x does not occur free in Γ, then it will suffice
to show that Γ ` ψ. If x does occur free in Γ, then an alphabetic variant
can be constructed where x is renamed to a variable that doesn’t occur
free in Γ.

I Suppose φ is the negation of another formula.
I If φ = ¬(ψ → θ), then it suffices (by rule T) to show that Γ ` ψ and

Γ ` ¬θ.
I If φ = ¬¬ψ, then it suffices to show Γ ` ψ.
I If φ = ¬∀ x ψ, then it suffices to show that Γ ` ¬ψx

t , where t is
substitutable for x in ψ. Unfortunately, this is not always possible.

As an example of when the last strategy fails, consider ¬∀ x ¬(Px → ∀ y Py).
It is true that ` ¬∀ x ¬(Px → ∀ y Py), but for every term t, 6 ` (Pt → ∀ y Py).



Syntactic strategies

Often, a strategy for showing the existence of a deduction can be chosen by
looking at the syntax of the formula to be deduced.

I Suppose φ = (ψ → θ). Then it is sufficient (and always possible) to show
that Γ ∪ {ψ} ` θ

I Suppose that φ is ∀ x ψ. If x does not occur free in Γ, then it will suffice
to show that Γ ` ψ. If x does occur free in Γ, then an alphabetic variant
can be constructed where x is renamed to a variable that doesn’t occur
free in Γ.

I Suppose φ is the negation of another formula.
I If φ = ¬(ψ → θ), then it suffices (by rule T) to show that Γ ` ψ and

Γ ` ¬θ.
I If φ = ¬¬ψ, then it suffices to show Γ ` ψ.
I If φ = ¬∀ x ψ, then it suffices to show that Γ ` ¬ψx

t , where t is
substitutable for x in ψ. Unfortunately, this is not always possible.

As an example of when the last strategy fails, consider ¬∀ x ¬(Px → ∀ y Py).
It is true that ` ¬∀ x ¬(Px → ∀ y Py), but for every term t, 6 ` (Pt → ∀ y Py).



Syntactic strategies

Often, a strategy for showing the existence of a deduction can be chosen by
looking at the syntax of the formula to be deduced.

I Suppose φ = (ψ → θ). Then it is sufficient (and always possible) to show
that Γ ∪ {ψ} ` θ

I Suppose that φ is ∀ x ψ. If x does not occur free in Γ, then it will suffice
to show that Γ ` ψ. If x does occur free in Γ, then an alphabetic variant
can be constructed where x is renamed to a variable that doesn’t occur
free in Γ.

I Suppose φ is the negation of another formula.
I If φ = ¬(ψ → θ), then it suffices (by rule T) to show that Γ ` ψ and

Γ ` ¬θ.
I If φ = ¬¬ψ, then it suffices to show Γ ` ψ.
I If φ = ¬∀ x ψ, then it suffices to show that Γ ` ¬ψx

t , where t is
substitutable for x in ψ. Unfortunately, this is not always possible.

As an example of when the last strategy fails, consider ¬∀ x ¬(Px → ∀ y Py).
It is true that ` ¬∀ x ¬(Px → ∀ y Py), but for every term t, 6 ` (Pt → ∀ y Py).



Soundness and Completeness

An important question for any calculus is its relationship to the semantic
notion of validity.

If only valid formulas are deducible, then the calculus is said to be sound .

If all valid formulas are deducible, then the calculus is said to be complete.

The existence of a sound and complete calculus for first-order logic is an
important result which demonstrates that it is a reasonable model of
mathematical thinking.



Soundness

Soundness Theorem

If Γ ` φ, then Γ |= φ.

Proof

The idea of the proof is that the logical axioms are logically valid, and that
modus ponens preserves logical implications.

We first assume the axioms are valid and prove by induction that any formula φ
deducible from Γ is logically implied by Γ.

I Case 1: if φ is a logical axiom, then by our assumption, |= φ, and thus
Γ |= φ.

I Case 2: If φ ∈ Γ, then clearly Γ |= φ.

I Case 3: If φ is obtained by modus ponens from ψ and ψ → φ, then by the
inductive hypothesis, Γ |= ψ and Γ |= (ψ → φ). It follows by the definition
of |= for → that Γ |= φ.



Soundness

It remains to show that the axioms are valid. We will consider only Axiom
Group 2 (the others are straightforward). First a lemma.

Substitution Lemma

If the term t is substitutable for the variable x in the wff φ, then for any model
M and variable assignment s, |=M φx

t [s] iff |=M φ[s(x |s(t))].

This lemma states that if we replace a variable x with a term t, the semantics
are the same as if the variable assignment is modified so that x takes on the
same value as the term t.

The proof is by induction on φ.

Now, consider Axiom Group 2: ∀ x α→ αx
t , where t is substitutable for x in α.

Assume |=M ∀ x α[s]. We must show that |=M αx
t [s]. We know from

|=M ∀ x α[s] that for any d ∈ dom(M), |=M α[s(x |d)]. In particular, if we let
d = s(t), then we have |=M α[s(x |s(t))]. But by the substitution lemma, this
implies that |=M αx

t [s].
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Soundness Corollaries

Corollary

If ` (φ↔ ψ), then φ and ψ are logically equivalent.

Corollary

If φ′ is an alphabetic variant of φ, then φ and φ′ are logically equivalent.

Recall that a set Γ is consistent iff there is no formula φ such that both Γ ` φ
and Γ ` ¬φ.

Define Γ to be satisfiable iff there is some model M and variable assignment s
such that |=M Γ[s].

Corollary

If Γ is satisfiable, then Γ is consistent.
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Completeness

Completeness Theorem (Gödel, 1930)

If Γ |= φ, then Γ ` φ.

This is equivalent to the following statement: any consistent set of formulas is
satisfiable.


