Loop Invariants

Verification

- Consider a loop-free program P
 - With conditionals
 - Memory references
 - Data structures
 - No function calls

- What is the computational complexity of verifying

 \[
 \{ \text{Precondition} \} \hspace{1mm} P \hspace{1mm} \{ \text{Postcondition} \}
 \]

Loops

- Now consider the same problem
 - Where P can have one loop
 - But still no function calls

- What is the computational complexity of verifying
 \[
 \{ \text{Precondition} \} \hspace{1mm} P \hspace{1mm} \{ \text{Postcondition} \}
 \]

Verification of Loops

- Verifying properties of loops is the hard problem

- Solve this, and everything else is much easier

A Simple Example

\[
\begin{align*}
X &= 0 \\
I &= 0 \\
\text{while } I < 10 \text{ do} & \\
& \hspace{1mm} X = X + 1 \\
& \hspace{1mm} I = I + 1 \\
\text{assert}(X == 10)
\end{align*}
\]

Loop Invariants

- To verify loops, it suffices to find a sufficiently strong loop invariant

- What is a loop invariant?
 - A predicate that holds on every loop iteration
 - (at the same program point, usually at loop head)

- What is "sufficiently strong"
 - More in a minute ...
Loop Invariant (1)

\[X = 0 \]
\[I = 0 \]
while I < 10 do
\[
\begin{align*}
& \{ \text{true} \} \\
& X = X + 1 \\
& I = I + 1
\end{align*}
\]
assert(X == 10)

Loop Invariant (2)

\[Z = 42 \]
\[X = 0 \]
\[I = 0 \]
while I < 10 do
\[
\begin{align*}
& \{ Z = 42 \} \\
& X = X + 1 \\
& I = I + 1
\end{align*}
\]
assert(X == 10)

Loop Invariant (3)

\[Z = 42 \]
\[X = 0 \]
\[I = 0 \]
while I < 10 do
\[
\begin{align*}
& \{ I < 4327 \} \\
& X = X + 1 \\
& I = I + 1
\end{align*}
\]
assert(X == 10)

Loop Invariant (4)

\[Z = 42 \]
\[X = 0 \]
\[I = 0 \]
while I < 10 do
\[
\begin{align*}
& \{ X < 11 \} \\
& X = X + 1 \\
& I = I + 1
\end{align*}
\]
assert(X == 10)

Loop Invariant (5)

\[Z = 42 \]
\[X = 0 \]
\[I = 0 \]
while I < 10 do
\[
\begin{align*}
& \{ X = I \& I < 11 \} \\
& X = X + 1 \\
& I = I + 1
\end{align*}
\]
assert(X == 10)

Comments

- Loop invariants aren't hard to compute
 - If you don't care about quality
 - true
 - What we want is to prove the assertion
 - Need an invariant strong enough to do this
Comments

- But how can we prove the assertion?
- We need a proof strategy
 - An algorithm that we can apply to any loop

Inductive Invariants

\[\text{while (B)} \]
\[\{ \]
\[\ldots \text{code} \ldots \]
\[\} \]
\[\text{Post} \]
\[I \wedge \neg B \Rightarrow \]
\[Post \]

Pre \(\Rightarrow\) I
The invariant holds initially

I \wedge B \{ \text{code} \} I
If the invariant and loop condition hold, executing the loop body re-establishes the invariant

I \wedge \neg B \Rightarrow Post
If the invariant holds and the loop terminates, then the post-condition holds

Loop Invariant (1)

\[X = 0 \]
\[I = 0 \]
while I < 10 do
\[\{ \text{true} \} \]
\[X = X + 1 \]
\[I = I + 1 \]
assert(X == 10)

Loop Invariant (2)

Z = 42
X = 0
I = 0
while I < 10 do
\[\{ Z = 42 \} \]
\[X = X + 1 \]
\[I = I + 1 \]
assert(X == 10)

Loop Invariant (3)

Z = 42
X = 0
I = 0
while I < 10 do
\[\{ I < 4327 \} \]
\[X = X + 1 \]
\[I = I + 1 \]
assert(X == 10)
Loop Invariant (4)

\[
\begin{align*}
Z &= 42 \\
X &= 0 \\
I &= 0 \\
\text{while } I < 10 &\text{ do} \\
&\quad \{ X < 11 \} \\
&\quad X = X + 1 \\
&\quad I = I + 1 \\
\text{assert}(X = 10)
\end{align*}
\]

Loop Invariant (5)

\[
\begin{align*}
Z &= 42 \\
X &= 0 \\
I &= 0 \\
\text{while } I < 10 &\text{ do} \\
&\quad \{ X = I \land I < 11 \} \\
&\quad X = X + 1 \\
&\quad I = I + 1 \\
\text{assert}(X = 10)
\end{align*}
\]

Invariant Inference

- An old problem
- A different approach with two ideas:
 1. Separate invariant inference from the rest of the verification problem

Why?

- Complementary to static analysis
 - underapproximations
 - "see through" hard analysis problems
 - functionality may be simpler than the code
- Possible to generate many, many tests

Nothing New Under the Sun

- Sounds like DAIKON?
 - Yes!
- Hypothesize (many) invariants
 - Run the program
 - Discard candidate invariants that are falsified
 - Attempt to verify the remaining candidates
A Simple Program

s = 0;
y = 0;
while(*)
{
 print(s,y);
 s := s + 1;
 y := y + 1;
}

• Instrument loop head
• Collect state of program variables on each iteration

Profs. Aiken, Barrett & Dill
Lecture 12

A DAIKON-Like Approach

s = 0;
y = 0;
while(*)
{
 print(s,y);
 s := s + 1;
 y := y + 1;
}

• Hypothesize
 - s=y
 - s=2y
• Data
<table>
<thead>
<tr>
<th>s</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Profs. Aiken, Barrett & Dill
Lecture 12

A DAIKON-Like Approach

s = 0;
y = 0;
while(*)
{
 print(s,y);
 s := s + 1;
 y := y + 1;
}

• Hypothesize
 - s=y
 - s=2y
• Data
<table>
<thead>
<tr>
<th>s</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Profs. Aiken, Barrett & Dill
Lecture 12

Another Approach

s = 0;
y = 0;
while(*)
{
 print(s,y);
 s := s + 1;
 y := y + 1;
}

• Data
<table>
<thead>
<tr>
<th>s</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Profs. Aiken, Barrett & Dill
Lecture 12

Arbitrary Linear Invariant

as + by = 0

• Data
<table>
<thead>
<tr>
<th>s</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Profs. Aiken, Barrett & Dill
Lecture 12
Observation

\[ax + by = 0 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(s)</th>
<th>(a)</th>
<th>(b)</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NullSpace(M)

\[\{ w | Mw = 0 \} \]

Linear Invariants

- Construct matrix \(M \) of observations of all program variables
- Compute NullSpace(\(M \))
- All invariants are in the null space

Spurious "Invariants"

- All invariants are in the null space
 - But not all vectors in the null space are invariants
- Consider the matrix

 \[\begin{pmatrix} s & y \\ 0 & 0 \end{pmatrix} \]

- Need a check phase
 - Verify the candidate is in fact an invariant

An Algorithm

- Check candidate invariant
 - If an invariant, done
 - If not an invariant, get counterexample
 - Counterexample can be guaranteed to satisfy all invariants
- Add new row to matrix
 - And repeat
Termination

- How many times can the solve & verify loop repeat?

- Each counterexample is linearly independent of previous entries in the matrix

- So at most N iterations
 - Where N is the number of columns
 - Upper bound on steps to reach a full rank matrix

Summary

- Superset of all linear invariants can be obtained by a standard matrix calculation

- Counter-example driven improvements to eliminate all but the true invariants
 - Guaranteed to terminate

What About Non-Linear Invariants?

```plaintext
s = 0;
y = 0;
while( * )
{
    print(s,y);
    s := s + y;
y := y + 1;
}
```

Idea

- Collect data as before

- But add more columns to the matrix
 - For derived quantities
 - For example, y^2 and s^2

- How to limit the number of columns?
 - All monomials up to a chosen degree d

[Nguyen, Kapur, Weimer, Forrest 2012]

What About Non-Linear Invariants?

```plaintext
s = 0;
y = 0;
while( * )
{
    print(s,y);
    s := s + y;
y := y + 1;
}
```

Solve for the Null Space

```plaintext
a + bs + cy + ds^2 + ey^2 + fsy = 0
```

Candidate invariant: $-2s + y + y^2 = 0$
Comments

• Same issues as before
 - Must check candidate is implied by precondition, is
 inductive, and implies the postcondition on
 termination
 - Termination of invariant inference guaranteed if
 the verifier can generate counterexamples

• Experience: Solvers do well as checkers!

Summary to This Point

• Algorithm for algebraic invariants
 - Up to a given degree

• Guess and Check
 - Hard part is inference done by matrix solve
 - Check part done by standard SMT solver
 - Much simpler and faster than previous approaches

What About Disjunctive Invariants?

• Disjunctions are expensive
 - In addition to conjunctions

• Existing techniques severely restrict
disjunctions
 - E.g., to a template

What About Non-Numeric Invariants?

• Arrays?
• Lists?
• Other data structures?

• Invariant inference techniques are very
 specialized

A Search-Based Approach

• All methods for finding invariants are
 heuristics
 - Can never be complete

• So why not use general but incomplete
 techniques?
MCMC

- Markov Chain Monte Carlo sampling
- The only known tractable solution method for high dimensional irregular search spaces

MCMC Overview

MCMC Sampling Algorithm for Invariants

1. Select an initial candidate
2. Repeat (millions of times)
 - Propose a random modification and evaluate cost
 - If (cost decreased)
 - accept
 - If (cost increased)
 - with some probability accept anyway

Recall

\[\text{Pre} \Rightarrow I \]

\[I(s) \Rightarrow I(t) \text{ if } s \{\text{body}\} t \]

\[I \land \neg B \Rightarrow \text{Post} \]

Data

- Good states \(G \)
 - Reachable states
- Pairs \(Z \)
 - States \((s,t)\) such that starting the loop body \(S \) in state \(s \) terminates in state \(t \).
- Bad states \(B \)
 - States that lead to an assertion violation

Cost Function (Roughly)

- Penalize a candidate invariant \(C \)
 - 1 for each good state \(g \) in \(G \) where \(C(g) \) is false.
 - 1 for each bad state \(b \) in \(B \) where \(C(b) \) is true
 - 1 for each pair \((s,t)\) in \(Z \) where \(C(s) \) and not \(C(t) \)
- The cost of \(C \) is the sum of the penalties
Overall Algorithm

- Run search until a 0-cost candidate C is found
- Use a decision procedure to verify that C is an invariant
 - If yes, done
 - If no, get a counterexample
 - A good state, bad state, or pair
 - Add to the data
 - Repeat

MCMC Sampling Algorithm for Invariants

1. Select an initial candidate
2. Repeat (millions of times)
 - Propose a random modification and evaluate cost
 - If (cost decreased)
 - accept
 - If (cost increased)
 - with some probability accept anyway

Numerical Invariants

- Find invariants of the form

\[
\bigvee_{i=1}^{\alpha} \bigwedge_{j=1}^{\beta} \sum_{k=1}^{n} w_k^{(i,j)} x_k \leq d^{(i,j)}
\]

Moves

- Replace a coefficient
- Replace a constant on the rhs
- Replace all coefficients and the constant in a single inequality

\[
\bigvee_{i=1}^{\alpha} \bigwedge_{j=1}^{\beta} \sum_{k=1}^{n} w_k^{(i,j)} x_k \leq d^{(i,j)}
\]

Arrays

- Use the fluid updates abstraction
- Reduce to search for numerical predicate T
 - But now involves universal quantifier
 - f,g are array variables

\[
\forall u,v,T(x_1, x_2, \ldots, x_n, u, v) \Rightarrow f[u] = g[v]
\]
A Problem with Arrays

- Decision procedures for arrays cannot give us counterexamples
- Instead use executions to generate data
 - Including bad states and pairs

Generating Data

- Pick a number \(k \)
- At the loop head
 - Assign all numeric variables a value \(\leq k \)
 - Assign all arrays a size \(\leq k \)
 - Assign all elements of arrays a value \(\leq k \)
- For experiments, we used \(k = 4 \)

Results on Arrays

<table>
<thead>
<tr>
<th>Program</th>
<th>[?]</th>
<th>23-R</th>
<th>AMC</th>
<th>Dual</th>
<th>Past</th>
<th>NMC</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>test-m</td>
<td>0.02</td>
<td>0.06</td>
<td>0.15</td>
<td>0.12</td>
<td>0.16</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>test-p</td>
<td>0.03</td>
<td>0.07</td>
<td>0.15</td>
<td>0.14</td>
<td>0.16</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>test-s</td>
<td>0.04</td>
<td>0.10</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>copy</td>
<td>0.02</td>
<td>0.08</td>
<td>0.16</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>copy-p</td>
<td>0.04</td>
<td>0.10</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>reverse</td>
<td>0.03</td>
<td>0.08</td>
<td>0.16</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>swap</td>
<td>0.12</td>
<td>0.15</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>d-loop</td>
<td>0.12</td>
<td>0.15</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>copy</td>
<td>0.07</td>
<td>0.09</td>
<td>0.16</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>stories</td>
<td>0.02</td>
<td>0.08</td>
<td>0.16</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>memory</td>
<td>0.04</td>
<td>0.10</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>find-s</td>
<td>0.02</td>
<td>0.08</td>
<td>0.16</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>find-s</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>append</td>
<td>0.07</td>
<td>0.10</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>range</td>
<td>0.09</td>
<td>0.12</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>alloc-r</td>
<td>0.02</td>
<td>0.08</td>
<td>0.16</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>alloc-r</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
<td>0.26</td>
<td>0.28</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Strings

- Search space is
 - Boolean combinations of predicates \(P \)
 - \(P \) consists of constants and predicates in the program

```plaintext
i:=0; x:="a*;
while(non_det())
  i++; x:='("x*x")';
assert(x.length == 2*i+1);
if(i>0) assert(x.contains("(a*)");
```

String Results

<table>
<thead>
<tr>
<th>Pure</th>
<th>replace</th>
<th>index</th>
<th>substring</th>
</tr>
</thead>
<tbody>
<tr>
<td>342.50</td>
<td>0.01</td>
<td>0.06</td>
<td>0.53</td>
</tr>
<tr>
<td>NMC</td>
<td>0.82</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Z3-STR</td>
<td>0.03</td>
<td>TO</td>
<td>114.55</td>
</tr>
</tbody>
</table>

Lists

- Search space
 - Boolean combinations of atoms
 - Atoms are relations \(R(x_1, \ldots, x_n) \)
- Moves
 - Replace one argument of a relation
 - Replace an entire relation
 - Flip polarity of an atom
Lists

- Use one reachability relation

\[n(x,y) = y \text{ is reachable from } x \text{ in 0 or more pointer dereferences} \]

List Results

<table>
<thead>
<tr>
<th>Program</th>
<th>#G</th>
<th>#B</th>
<th>Search</th>
<th>Valid</th>
<th>Prop.</th>
<th>Accept.</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete</td>
<td>50</td>
<td>2</td>
<td>0.20</td>
<td>0.04</td>
<td>4437</td>
<td>9949</td>
</tr>
<tr>
<td>delete-all</td>
<td>20</td>
<td>7</td>
<td>1.03</td>
<td>0.13</td>
<td>8482</td>
<td>7225</td>
</tr>
<tr>
<td>find</td>
<td>50</td>
<td>9</td>
<td>0.42</td>
<td>0.04</td>
<td>6681</td>
<td>5560</td>
</tr>
<tr>
<td>filter</td>
<td>50</td>
<td>26</td>
<td>10.41</td>
<td>0.11</td>
<td>160489</td>
<td>126389</td>
</tr>
<tr>
<td>last</td>
<td>50</td>
<td>3</td>
<td>0.90</td>
<td>0.04</td>
<td>98064</td>
<td>87446</td>
</tr>
<tr>
<td>reverse</td>
<td>20</td>
<td>54</td>
<td>55.11</td>
<td>0.08</td>
<td>582665</td>
<td>484208</td>
</tr>
</tbody>
</table>

Summary

- Invariant inference is a hard problem, made easier by looking at data from executions
 - Because the executions satisfy all the invariants

- Search-based techniques can work
 - Competitive with other methods
 - Easier to retarget to new domains

- Still limited by decision procedures
 - But not by their ability to do inference