Program Equivalence
(slides due to Rahul Sharma)

Motivation
• Verification is specification-limited
 • We need specifications to verification
 • And specifications are hard to come by

• Much research focuses on “well-known” specs
 • Buffer overruns, null dereference, string termination, integer overflows …

Performance
• Many systems where code performance matters
 • Compute-bound
 • Repeatedly executed

 • Scientific computing
 • Graphics
 • Low-latency server code
 • Encryption/decryption
 • …

Goal
• Minimum pain, maximum gain

• Machine code in 64 bit x86
 • The universal ISA for desktops/servers/laptops

• Automatically generate best possible x86 code
X86 Optimizations are Hard

- x86 is a CISC instruction set
- Many complicated instructions
 - E.g., dpp, popcnt, crc, ...
 - ~2000 instruction variants (~300 opcodes)
 - 3439 page manual
- x86 optimizations requires expert knowledge
 - Experts take hours, days, or even weeks
 - For each new processor

Superoptimization

- Massalin [ASPLOS 87], Bansal and Aiken [ASPLOS 06]
 - Enumerate all possible straight line programs
- STOKE, Schkufza, Sharma, Aiken [ASPLOS 13]
 - Random enumeration instead of exhaustive
 - Correctness of straight line code is relatively easy
 - But we want to prove correctness of loops ...

Outline

- Equivalence checker for x86
 - Prove correctness of aggressive optimizations
- From checker to optimizer
 - Different application of verification technology
- Use information from context: even better code
- Conclusion

Compiler structure

Certified Compilation

- Implementation requires a mammoth effort
 - CompCert does not do any loop optimizations
- Maintaining a certified compiler is difficult
Translation Validation

- Instrument the compiler (gcc/llvm)
- Proves correctness of an IR and not the binary
- Validating binaries is harder
 - Lack of structure, static analysis is difficult

Equivalence Checking

- Trustworthy Compiler
 - CompCert, gcc –O0
- Performance of
 - Optimizing Compiler
 - gcc –O3, icc –O3

Proof Decomposition

- SMT solvers can prove properties of loop-free code
- We want to prove equivalence of loops
- Decompose proof for loops into subproofs
 - Subproofs about loop free fragment, query SMT solvers
 - Cutpoints: break the loops
 - Invariants: relationships between T and R at cutpoints

Proof Decomposition Example

```
while (i != 0) i--;
```

Rewrite R

```
\text{while } (r9 
\text{movq } 8(rsp), r9
\text{decq } r9
\text{movq } r9, 8(rsp)
\text{retq}
```

Target T

```
\text{movq } 8(rsp), r9
\text{decq } r9
\text{movq } r9, 8(rsp)
\text{retq}
```

Cutpoints From Data

- Attempt to detect cutpoints
 - Number of times program points are executed

Inference

- Given a simulation relation, proofs for loops reduce to subproofs for loop free fragments
 - Query SMT solvers
- Main challenge: infer a simulation relation
 - Infer cutpoints
 - Infer invariants
- We use compilers as black boxes
- Mine relations from data (program executions)
Invariants

- Invariants are restricted to equalities
 - Infer invariants from observed data values

Target T
```
movq 8(rsp), rdi
#rdi != 0
```
```
movq 8(rsp), rdi
deq rdi
movq rdi, 8(rsp)
```
```
retq
```

Rewrite R
```
movq 8(rsp), r9
#r9 != 0
deq r9
retq
```

Linear algebra

- Mine all equalities
- Find all w s.t. $A w = 0$
- Nullspace

$A = \begin{bmatrix}
2 & 2 & 2 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}$

$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Nullspace:
- $w_1 = [–1, 1, 0]$
- $w_2 = [0, 1, –1]$

Check Simulation Relation

- Query SMT solvers
- Incorporate counter-examples in relations
- Sound but not complete
 - If checking succeeds then equivalent
 - Can fail to infer a correct simulation relation
 - Learn from counter-examples

Outline

- Equivalence checker for x86
- From checker to optimizer
- Use information from context: even better code
- Conclusion

Results [OOPSLA’13]

<table>
<thead>
<tr>
<th>Program</th>
<th>Run-time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lerner1a</td>
<td>12.94</td>
</tr>
<tr>
<td>lerner3b</td>
<td>53.72</td>
</tr>
<tr>
<td>bansal</td>
<td>9.89</td>
</tr>
<tr>
<td>chomp</td>
<td>11.00</td>
</tr>
<tr>
<td>fannkuch</td>
<td>17.03</td>
</tr>
<tr>
<td>knucleotide</td>
<td>6.56</td>
</tr>
<tr>
<td>lists</td>
<td>1.40</td>
</tr>
<tr>
<td>msievebits*</td>
<td>36.44</td>
</tr>
<tr>
<td>msieve*</td>
<td>166.31</td>
</tr>
<tr>
<td>qsort*</td>
<td>140.87</td>
</tr>
<tr>
<td>sha1*</td>
<td>12888.87</td>
</tr>
</tbody>
</table>
From Checkers to Optimizers

- We have a checker to prove correctness
- We can be adventurous with optimizations!
- Bombard the checker with random programs
- Take the fastest correct program
- STROKE (Schkufta, Sharma, Aiken ASPLOS’13)
 - Start from an initial program (unoptimized, empty, ...)
 - Generate new programs by repeated random changes
 - Output the fastest correct program found in time limit

Random Transformations

```
insert
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...
```

```
delete
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rsi, rdx
...
```

```
opcode
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...
```

```
instruction
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...
```

```
opcode
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...
```

```
instruction
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...
```

```
opcode
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...
```

• STOKE is comparable or outperforms gcc and icc while maintaining correctness w.r.t. unoptimized code.

Results (ASPLOS' 13, OOPSLA' 13)

- Speedups are good: 70% over production compiler
- However, x86 experts produce much better code
- Why can’t we get 2X, 3X speedups over gcc -O3?
- Checker rejects many “good” programs
 - Work perfectly with the application
 - Fail on some weird corner case that cannot arise
Outline

• Equivalence checker for x86
• From checker to optimizer
• Use information from context: even better code
• Conclusion

Example

• Target

  ```
  foo(int32_t* a, int32_t* b)
  *a++=*b++;
  *a++=*b++;
  *a++=*b++;
  *a++=*b++;
  return;
  ```

 • Expert Rewrite

  ```
  MOVAPD xmm0, [b]
  MOVAPD [a], xmm0
  RET
  ```

 • Incorrect, if a and b overlap

 • Segfault if a and b are not 16 byte aligned

Conditions

• Cannot use the fast rewrite in an arbitrary context
• Developers know conditions on the context

 • Used in adding unchecked annotations, writing assembly

 • Unconditionally correct optimizations are effective
 • But fall short of the fastest code desired

 • For performance, we need conditional equivalence

Conditional Correctness

• Target

  ```
  foo(int32_t* a, int32_t* b)
  *a++=*b++;
  *a++=*b++;
  *a++=*b++;
  *a++=*b++;
  return;
  ```

 • Rewrite

  ```
  MOVAPD xmm0, [b]
  MOVAPD [a], xmm0
  RET
  ```

 • Conditionally correct
 • restrict(a), restrict(b)
 • a, b are 16 byte aligned

Conditionally correct optimizer

Random Programs Conditionally Correct Programs

STOKE CHECKER Tests Fast Conditionally Correct Program

Data!
Condition Inference

- Tests encode the conditions on contexts implicitly
- Learn facts about tests
 - Keep adding facts until the proof succeeds
- Aliasing: two memory dereferences do not alias
 - Alignment: an address is x-byte aligned
 - Equalities, inequalities, floating point specific

Conditions

1. Analyze A to verify C
2. Manually verify C
3. Runtime check

Conditional GCC

Annotations can help a compiler significantly

Conditional STOKE

STOKE with condition inference is comparable or outperforms gcc with or without annotations

Runtime Checks

Overhead of condition checking can be bearable

Aliasing

- Restricting aliasing results in simpler queries
 - For equivalence, $p \equiv q \leftrightarrow p = q$
 - Byte addressable memory, vector instructions
Conclusion

• Proving the correctness of optimizations is hard
 • Facilitated by data-driven invariant inference

• Better checkers lead to better optimizers

• Context insensitive optimizations fall short
 • Leverage context by inferring conditions from data

• Generate fast and provably correct code