
CS368: Algorithmic Techniques for Big Data Spring 2019-2020

Problem Set 1

Prof. Moses Charikar Due: April 26, 2020, 11:59pm

Policy: You are permitted to discuss and collaborate on the homework but you must write up
your solutions on your own or as a group of two. Furthermore, you need to cite your collaborators
and/or any sources that you consulted. No late submissions are allowed. There will be no late
days. All homework submissions are subject to the Stanford Honor Code. For all assignments, we
are allowing group submissions for groups of 1 or 2.

Submission: We will use Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account using your stanford.edu account. Use the course code
MK7NNR to register for CS368. You must use LaTeX, LyX, Microsoft Word, or a similar editor
to typeset your write-up. If you are working as a group of two, only one group member needs to
submit the assignment. When submitting, please remember to add all group member names on
Gradescope.

Length of submissions: Please include as much of the calculations that show that you understand
everything that is going through the answer. As a rule of thumb after you have solved the problem,
try to identify what are the main steps taken and critical points of a proof and include them.
Unnecessary long answers to questions will be penalized. The points next to each question are
indicative of the hardness/length of the proof.

1 Estimating F3 using Complex Numbers [30 points]

In class we saw a particular way of producing estimates of frequency moments Fk =
n∑
i=1

fki and

we briefly explored whether different estimators are possible. In this problem, you will see how
one can use the field of complex numbers to achieve this. Let Rk = {x ∈ C|xk = 1} be the set of
k-roots of unity. For simplicity, we will focus on the case of k = 3. The proposed basic estimator
works as follows:

1. For each i ∈ [m] we pick independently a uniform random element xi ∈ R3.

2. We form the random variable Z =

n∑
i=1

fixi, by adding xi to Z each time we come across

element i ∈ [m].

3. We estimate F3 as Re Z3.

One can think of the mapping i 7→ xi as hash function, that instead of mapping to the 2-roots of
unity {−1,+1} (in the original AMS scheme) maps to the 3-roots. You will analyze properties of
this estimator:

(a) [10 points] Show that for any element i ∈ [m], E[xji] = E[x̄i
j] =

{
0 if 1 ≤ j < 3
1 if j = 3

.

1

(b) [10 points] Show that E[Re Z3] = F3. Hint: compute first E[Z3].

(c) [10 points] Show that Var[Re Z3] = O(F 3
2). Hint: use the multinomial expansion

2 Estimating the Join Size using Sketches [20 points]

A scientist at BigDatabase Inc. has observed that the second frequency moment F2 is the size of
a self-join: the join of a relation in a database with itself. In fact, one can design a sketch that
can scan a relation in one pass (i.e., in streaming fashion) such that, based on the sketches of two
different relations, we can estimate the size of their join. This scientist has tasked you to design
such a sketch and show that it works (with the full analysis including a high probability guarantee).

Recall that for two relations (i.e., tables in a database) r(A,B) and s(A,C), with a common
attribute (i.e., column) A, we define the join r 1 s to be a relation consisting of all tuples (a, b, c)

such that (a, b) ∈ r and (a, c) ∈ s. Therefore, if f
(r)
j and f

(s)
j denote the frequencies of j in the

first columns (i.e., “A”-columns) of r and s, respectively, and j can take values in [n], then the size

of the join is
n∑
j=1

f
(r)
j f

(s)
j . Let S =

√∑
f
(s)2

i and R =

√∑
f
(r)2

i . When estimating the error of

your design, please give an error guarantee relative to RS.

3 A (1± ε)-factor Approximation Algorithm [40 points]

Assume a data stream x1, . . . , xn ∈ [m] where [m] denotes the set {1, . . . ,m} for some large m. For
simplicity, you may assume that m is a power of 2. Let F0 denote the number of distinct elements
in the data stream. Consider the following algorithm. Note c is some constant to be chosen in your
analysis and zeros(j) is the number of trailing 0’s in the binary representation of j for j ∈ [m].

Algorithm 1

Choose h : [m]→ [m] from a pairwise independent family of hash functions
z ← 0
B ← ∅
for each xi do

if zeros(h(xi)) ≥ z then
B ← B ∪ {(xi, zeros(h(xi))}

while |B| ≥ c/ε2 do
z ← z + 1
Remove all (xi, z

′) where z′ < z from B

Return F̃0 = |B| · 2z

Let F denote the event that Algorithm 1 returns an answer F̃0 that is not within the 1 ± ε mul-
tiplicative factor of the true number of distinct elements F0 and Pr(F) be the failure probability.
We show that Pr(F) can be upper bounded by looking at two cases based on the final value of z,
call this z∗, at the termination of Algorithm 1. Note 0 ≤ z∗ ≤ log2m. The failure probability can

2

be written:

Pr(F) = Pr(F ∧ z∗ = 0) + Pr(F ∧ z∗ ≥ 1) .

Pr(F ∧ z∗ = 0) is the failure probability in the case z∗ = 0 and Pr(F ∧ z∗ ≥ 1) is the failure
probability in the case z∗ ≥ 1.

Please use the following random variables in your analysis. For each j ∈ [m] and integer r ≥ 0, we
define:

Xr,j =

{
1, if zeros(h(j)) ≥ r
0, otherwise

Yr =
∑
j:fj>0

Xr,j ,

where fj is the number of occurrences of element j in the given data stream.

(a) [10 points] Show that Pr(F ∧ z∗ = 0) = 0.

(b) [10 points] For some s to be chosen (just for the analysis and not used in the algorithm),

show that Pr(F ∧ z∗ ≥ 1) ≤ E[Ys−1]

c/ε2
+

s−1∑
r=1

Var(Yr)

(εF0/2r)2
. In your derivation, you may assume

s ∈ (1, log2m]. Hint: use Chebyshev’s inequality and Markov’s inequality.

(c) [10 points] Show Pr(F ∧ z∗ ≥ 1) <
2s

ε2F0
+

F0ε
2

c2s−1
. Let s be the unique integer such that

12

ε2
≤ F0

2s
<

24

ε2
(why does such an s exist?). Choose c so that Pr(F ∧ z∗ ≥ 1) is at most some

constant strictly less than
1

2
.

(d) [10 points] Conclude that Pr(F) is at most some constant strictly less than
1

2
. Using an

idea discussed in class, improve the success probability to 1 − δ for any δ > 0. What is the
total space used by the modified algorithm?

4 Data Streams with Insertions and Deletions [50 points]

Assume a data stream (x1,∆1), . . . , (xn,∆n) where xi ∈ [m] = {1, . . . ,m} and ∆i ∈ {±1}. ∆i = +1
corresponds to an insertion of the element xi and ∆i = −1 corresponds to a deletion of the
element xi. Let F0 denote the number of distinct elements with counts not equal to 0, i.e., F0 =
#{j|

∑
i:xi=j

∆i 6= 0}. We show that we can compute F̃0 ∈ [(1 − ε)F0, (1 + ε)F0] with probability

at least 1− δ using poly

(
log

1

δ
,
1

ε
, log n, logm

)
space. We use poly(·) to denote some polynomial

function of its arguments. We note that there are other, more sophisticated, approaches that
improve on the space usage of the scheme you will analyze in this problem.

To approximately compute F0, we will make use of the following subroutines. Roughly speaking,
our approach uses Subroutine A1 at the top level, which in turn uses Subroutine A2.

3

Subroutine A1

Input: A data stream (with insertions and deletions) and threshold T .
Output: With probability at least 1− δ1, it returns ‘YES’ if F0 > (1 + ε1)T and ‘NO’

if F0 < (1− ε1)T , and uses poly

(
log

1

δ1
,

1

ε1
, log n, logm

)
space.

If F0 ∈ [(1− ε1)T, (1 + ε1)T], it returns either ‘YES’ or ‘NO’.

Subroutine A2

Input: A data stream (with insertions and deletions).
Output: It returns ‘ZERO’ if F0 = 0 and ‘NOT ZERO’ otherwise with probability at

least 1− δ2 using poly

(
log

1

δ2
, logm, log n

)
space.

We will show that each of these subroutines can be implemented. In part a, we show that Subroutine
A2 can be implemented. In parts b - d, we show that the following algorithm, Algorithm 2 for some
R and g to be determined, implements A1.

Algorithm 2

Input: A data stream and threshold T .
Output: Sample R subsets S1, . . . , SR of [m] where each element is included in each

subset with probability
1

T
independently. Let Si be the elements of the stream that

are in Si. Run Subroutine A2 on S1, . . . ,SR in parallel. If the fraction of ‘ZERO’
outcomes out of R outcomes is at most g(T, ε1), return ‘YES’. Otherwise, return
‘NO’.

For a randomly generated set S where each element is included with probability
1

T
, let F0|S be

the number of distinct elements of the data stream restricted to the subset S. Note that to obtain
such a random set S, we choose a random hash function h : [m] → [0, 1] and only consider those

elements that hash to those values less than
1

T
. For the purpose of this problem, we assume there

exists a family of hash functions that hash elements to [0, 1] uniformly randomly and ignore space
requirements for it.

(a) [10 points] Design and analyze an algorithm that implements A2. Hint: Use the AMS sketch.

(b) [10 points] Let p be the probability that F0|S = 0 when F0 > (1 + ε1)T and q be the
probability that F0|S = 0 when F0 < (1 − ε1)T . (These probabilities are over the random

choice of S). Show that p ≤
(

1− 1

T

)(1+ε1)T

and q ≥
(

1− 1

T

)(1−ε1)T
.

(c) [10 points] Show that q − p = Ω(ε1). For simplicity, assume T ≥ 3

2
.1

1Since the answer F0 to our original problem is an integer, it suffices to consider T of the form (1 + ε/c)i (for some

4

Hint: The Taylor expansion αx = ex lnα =
∞∑
i=0

(x lnα)i

i!
might be useful here.

(d) [10 points] Choose an appropriate R (in terms of ε1 and δ1) and g (in terms of T and ε1)
and show that Algorithm 2 implements A1.
Hint: Use the additive version of Chernoff bound in this handout:
https: // www. cs. cmu. edu/ ~ avrim/ Randalgs11/ lectures/ lect0124. pdf .

(e) [10 points] Using Subroutines A1 and A2, design and analyze an algorithm that for any
δ > 0, returns an estimate F̃0 ∈ [(1− ε)F0, (1 + ε)F0] with probability at least 1− δ and uses

poly

(
log

1

δ
,
1

ε
, log n, logm

)
space.

Hint: Consider values of T of the form (1 + ε/c)i for some constant c ≥ 1, and integers i.

c ≥ 1, and integer i) that are bounded away from 1, say at least
3

2
, for sufficiently small ε. We will not treat this

here.

5

