CS368: Algorithmic Techniques for Big Data Spring 2019-2020

Problem Set 1
Prof. Moses Charikar Due: April 26, 2020, 11:59pm

Policy: You are permitted to discuss and collaborate on the homework but you must write up
your solutions on your own or as a group of two. Furthermore, you need to cite your collaborators
and/or any sources that you consulted. No late submissions are allowed. There will be no late
days. All homework submissions are subject to the Stanford Honor Code. For all assignments, we
are allowing group submissions for groups of 1 or 2.

Submission: We will use Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account using your stanford.edu account. Use the course code
MKT7NNR to register for CS368. You must use LaTeX, LyX, Microsoft Word, or a similar editor
to typeset your write-up. If you are working as a group of two, only one group member needs to
submit the assignment. When submitting, please remember to add all group member names on
Gradescope.

Length of submissions: Please include as much of the calculations that show that you understand
everything that is going through the answer. As a rule of thumb after you have solved the problem,
try to identify what are the main steps taken and critical points of a proof and include them.
Unnecessary long answers to questions will be penalized. The points next to each question are
indicative of the hardness/length of the proof.

1 Estimating F3 using Complex Numbers [30 points]

n
In class we saw a particular way of producing estimates of frequency moments Fj = Z fik and
i=1

we briefly explored whether different estimators are possible. In this problem, you wizll see how
one can use the field of complex numbers to achieve this. Let Ry = {x € C|z* = 1} be the set of
k-roots of unity. For simplicity, we will focus on the case of k = 3. The proposed basic estimator
works as follows:

1. For each i € [m] we pick independently a uniform random element x; € Rs3.

n
2. We form the random variable Z = Z fixi, by adding x; to Z each time we come across
i=1
element i € [m].

3. We estimate F3 as Re Z°.

One can think of the mapping ¢ — x; as hash function, that instead of mapping to the 2-roots of
unity {—1,+1} (in the original AMS scheme) maps to the 3-roots. You will analyze properties of
this estimator:

' ‘ . < i
(a) [10 points] Show that for any element i € [m], E[z]] = E[z;/] = {(1) i 1 ;i; 3.



(b) [10 points] Show that E[Re Z°] = F3. Hint: compute first E[Z>].

(¢) [10 points] Show that Var[Re Z3] = O(Fy). Hint: use the multinomial expansion

2 Estimating the Join Size using Sketches [20 points]

A scientist at BigDatabase Inc. has observed that the second frequency moment F5 is the size of
a self-join: the join of a relation in a database with itself. In fact, one can design a sketch that
can scan a relation in one pass (i.e., in streaming fashion) such that, based on the sketches of two
different relations, we can estimate the size of their join. This scientist has tasked you to design
such a sketch and show that it works (with the full analysis including a high probability guarantee).

Recall that for two relations (i.e., tables in a database) r(A, B) and s(A4,C), with a common
attribute (i.e., column) A, we define the join r X s to be a relation consisting of all tuples (a, b, ¢)
such that (a, b) € r and (a,c) € s. Therefore, if f(r) and f(s denote the frequencies of j in the
first columns (i.e., “A”-columns) of r and s, respectlvely, and Jj can take values in [n], then the size

of the join is Z f f(s Let S = 1/2 f *and R = UZ f . When estimating the error of

your design, please give an error guarantee relative to RS.

3 A (1+e¢)-factor Approximation Algorithm [40 points]

Assume a data stream x4, ..., z, € [m| where [m] denotes the set {1,...,m} for some large m. For
simplicity, you may assume that m is a power of 2. Let Fy denote the number of distinct elements
in the data stream. Consider the following algorithm. Note ¢ is some constant to be chosen in your
analysis and zeros(j) is the number of trailing 0’s in the binary representation of j for j € [m)].

Algorithm 1

Choose h : [m] — [m] from a pairwise independent family of hash functions
2+ 0
B+
for each z; do
if zeros(h(z;)) > z then
B < B U {(x;,zeros(h(x;))}
while |B| > ¢/¢? do
z+z+1
Remove all (z;,2') where 2’ < z from B

Return Fy = |B| - 2°

Let F denote the event that Algorithm 1 returns an answer Fy that is not within the 1 + ¢ mul-
tiplicative factor of the true number of distinct elements Fjy and Pr(F) be the failure probability.
We show that Pr(F) can be upper bounded by looking at two cases based on the final value of z,
call this z*, at the termination of Algorithm 1. Note 0 < z* < log, m. The failure probability can



be written:

Pr(F)=Pr(FAz"=0)+Pr(FAZ">1).

Pr(F A z* = 0) is the failure probability in the case z* = 0 and Pr(F A z* > 1) is the failure
probability in the case z* > 1.

Please use the following random variables in your analysis. For each j € [m] and integer r > 0, we
define:

1, if zeros(h(j)) > r
Xrj = .
0, otherwise

Yo=Y X,

j:fj>0

where f; is the number of occurrences of element j in the given data stream.

(a)
(b)

[10 points] Show that Pr(F A z* =0) = 0.

[10 points] For some s to be chosen (just for the analysis and not used in the algorithm),

E[Ys1] <= Var(¥;)
show that Pr(FAz* > 1) < 6/86;1 + ; (ng/2:)2' In your derivation, you may assume

s € (1,logy m]. Hint: use Chebyshev’s inequality and Markov’s inequality.

28 Fyé?
[10 points] Show Pr(F Az" > 1) < o T 2076_1. Let s be the unique integer such that
€e“ro C
12 Fy 24 . * .
= < 5 <3 (why does such an s exist?). Choose ¢ so that Pr(F A z* > 1) is at most some
€

. 1
constant strictly less than 5

1
[10 points] Conclude that Pr(F) is at most some constant strictly less than —. Using an

idea discussed in class, improve the success probability to 1 — 0 for any 6 > 0. What is the
total space used by the modified algorithm?

4 Data Streams with Insertions and Deletions [50 points]

Assume a data stream (z1, A1), ..., (n, Ay) where z; € [m] = {1,...,m} and A; € {£1}. A; = +1
corresponds to an insertion of the element z; and A; = —1 corresponds to a deletion of the

element x;. Let Fj denote the number of distinct elements with counts not equal to 0, i.e., Fy =
#{4> i.2,=; Ai # 0}. We show that we can compute Fy € [(1 — €)Fp, (1 + €)Fp] with probability

11
at least 1 — § using poly [ log 5 logn, log m> space. We use poly(+) to denote some polynomial
€

function of its arguments. We note that there are other, more sophisticated, approaches that
improve on the space usage of the scheme you will analyze in this problem.

To approximately compute Fp, we will make use of the following subroutines. Roughly speaking,
our approach uses Subroutine A; at the top level, which in turn uses Subroutine As.



Subroutine A4;

Input: A data stream (with insertions and deletions) and threshold T'.
Output: With probability at least 1 — 41, it returns ‘YES’ if Fy > (1 + ¢;)T and ‘NO’
1 1
if Fop < (1 —¢€1)T, and uses poly <log R logn, log m> space.
1 €
If Fo € [(1 —e1)T, (14 €1)T], it returns either ‘YES’ or ‘NO’.

Subroutine A;

Input: A data stream (with insertions and deletions).
Output: It returns ‘ZERO’ if F; = 0 and ‘NOT ZERQO’ otherwise with probability at

1
least 1 — do using poly <log 5 log m, log n> space.
2

We will show that each of these subroutines can be implemented. In part a, we show that Subroutine
Ao can be implemented. In parts b - d, we show that the following algorithm, Algorithm 2 for some
R and g to be determined, implements Aj.

Algorithm 2

Input: A data stream and threshold T
Output: Sample R subsets St,...,Sg of [m] where each element is included in each
1
subset with probability T independently. Let S; be the elements of the stream that

are in .S;. Run Subroutine As on Sy, ...,Sg in parallel. If the fraction of ‘ZERO’
outcomes out of R outcomes is at most g(7, €1), return ‘YES’. Otherwise, return
‘NO’.

1
For a randomly generated set S where each element is included with probability T let Fy|s be

the number of distinct elements of the data stream restricted to the subset S. Note that to obtain
such a random set .S, we choose a random hash function h : [m] — [0, 1] and only consider those

1
elements that hash to those values less than T For the purpose of this problem, we assume there

exists a family of hash functions that hash elements to [0, 1] uniformly randomly and ignore space
requirements for it.

(a) [10 points] Design and analyze an algorithm that implements Ay. Hint: Use the AMS sketch.

(b) [10 points] Let p be the probability that Fy|s = 0 when Fy > (1 + €;)T and ¢ be the
probability that Fy|s = 0 when Fy < (1 — €1)T. (These probabilities are over the random

(14€1)T (1—e1)T
choice of §). Show that p < <1 — T) and ¢ > <1 — T) )

3
(¢) [10 points] Show that ¢ — p = Q(e;). For simplicity, assume T > 5.1

'Since the answer Fy to our original problem is an integer, it suffices to consider T' of the form (14 ¢/c)" (for some



o A
l K3
Hint: The Taylor expansion o = ¢*m = E w might be useful here.
7!
=0

[10 points] Choose an appropriate R (in terms of €; and ¢1) and ¢ (in terms of 7" and €;)
and show that Algorithm 2 implements A;.

Hint: Use the additive version of Chernoff bound in this handout:

https: //www. cs. cmu. edu/ ~avrim/Randalgsil/ lectures/ lect0124. pdf .

[10 points] Using Subroutines A; and A, design and analyze an algorithm that for any
d > 0, returns an estimate Fy € [(1 — €)Fp, (1 + €) Fy| with probability at least 1 — ¢ and uses

11
poly | log 5 log n,logm | space.

Hint: Consider values of T of the form (1+ €/c)’ for some constant ¢ > 1, and integers i.

. . 3 . . .
¢ > 1, and integer i) that are bounded away from 1, say at least 3 for sufficiently small e. We will not treat this

here.



