
CS368: Algorithmic Techniques for Big Data Spring 2019-2020

Problem Set 2

Prof. Moses Charikar Due: May 10, 2020, 11:59pm

Policy: You are permitted to discuss and collaborate on the homework but you must write up
your solutions on your own or as a group of two. Furthermore, you need to cite your collaborators
and/or any sources that you consulted. No late submissions are allowed. There will be no late
days. All homework submissions are subject to the Stanford Honor Code. For all assignments, we
are allowing group submissions for groups of 1 or 2.

Submission: We will use Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account using your stanford.edu account. Use the course code
MK7NNR to register for CS368. You must use LaTeX, LyX, Microsoft Word, or a similar editor
to typeset your write-up. If you are working as a group of two, only one group member needs to
submit the assignment. When submitting, please remember to add all group member names on
Gradescope.

Length of submissions: Please include as much of the calculations that show that you understand
everything that is going through the answer. As a rule of thumb after you have solved the problem,
try to identify what are the main steps taken and critical points of a proof and include them.
Unnecessary long answers to questions will be penalized. The points next to each question are
indicative of the hardness/length of the proof.

1 Sketching for Faster Updates [40 points]

Recall that the AMS sketch from class for F2 moment estimation can be thought of as picking a
random m×n matrix Π with entries ±1/

√
m for m = O(ε−2), and estimating ‖f‖22 as ‖Πf‖22. One

can show that with at least 2/3 probability,

(1− ε)‖f‖22 ≤ ‖Πf‖22 ≤ (1 + ε)‖f‖22 (1)

In this problem you will explore a different way of estimating F2. Imagine picking Π ∈ {±1, 0}m×n
differently, for each i ∈ {1, . . . , n} we pick a row hi ∈ [m] uniformly at random and set Πhi,i = ±1
(the sign is chosen uniformly at random from {−1, 1}), and all other entries of the i-th column are
set to 0. This Π has the advantage that in turnstile streams (where each update vector ∆x can
contain a non-zero integer only at one location) we can process updates in constant time. Show
that using this Π still satisfies the conditions of equation (1) with 2/3 probability for m = O(ε−2).

2 Approximate Frequency Estimation [30 points]

Consider the following algorithm. We prove an error guarantee in the following parts. It might be
helpful to look at how the counter associated with an element changes as the element gets added
to and removed from the bins.
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Algorithm 1

Input: stream i1, i2, . . . , im ∈ [n], number of bins k.
initialize each bin b ∈ [k] with an element eb ← ∅ (initially null) and a counter cb ← 0.
for each element i` in the stream do

if i` is in a bin b then
increment b’s counter cb ← cb + 1

else
find the bucket b` with the smallest counter value (breaking ties arbitrarily)
replace the current element eb` ← i`
increment its counter cb` ← cb` + 1.

Output: for each i ∈ [n] output f̂i = cb if eb = i and 0 otherwise.

(a) [15 points] Consider an element i with f̂i = 0. Show that the true frequency fi is such that

0 ≤ fi <
m

k
. This would imply |f̂i − fi| <

m

k
.

(b) [15 points] Consider an element i with f̂i > 0. Show that |f̂i − fi| <
m

k
.

3 Reducing Randomness via Nisan’s Generator1 [15 points]

We have seen a collection of algorithms for estimating the `p norm of the n-dimensional vector x
induced by the stream, for p ∈ (0, 2]. The idea was to calculate a “linear sketch” Πx = [Z1 . . . Zk],
where Π was an k × n random matrix, with i.i.d. entries rij selected from a p-stable distribution.
After calculating Πx, the algorithm outputs

median[|Z1|, · · · , |Zk|]/C(p)

as an estimator of ‖x‖p, where C(p) denotes some scaling factor that depends only on p.

For the purpose of this problem, we will focus on the decision version of the algorithm, which checks
whether

median[|Z1|, · · · , |Zk|]/C(p) ≥ T (2)

for some threshold T . We assume that p = 2, in which case the entries of Π can be selected from
Gaussian distribution N (0, 1). We also assume that the entries of x always remain integers from
{−M . . .M} for some M = nO(1), i.e., they have values polynomial in the dimension n.

There are two issues regarding the space requirement:

• Discretization: given that the algorithm space is measured in bits, we need to make sure
that each rij has bounded precision. Dealing with this issue is straightforward, as we can

modify the random variables so that their values fall into an interval [−c
√

log n . . . c
√

log n],
and are multiples of of 1/nc, for some c = O(1). The analysis of the modified algorithm
remains essentially unchanged, modulo minor increase in the approximation error and failure
probability. In what follows we assume that rij are already generated in this way, and therefore
need only b = O(log n) bits of representation.

1Thanks to Piotr Indyk and Jelani Nelson for this question.
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• Pseudo-randomness: even if r′ijs are discrete, we cannot afford to store all of them in memory,
as this would require knb bits of storage. Instead, they can be generated “on the fly” using
a pseudorandom generator, i.e., there is an efficiently computable mapping G : {0, 1}L →
{{0, 1}b}nk such that we can set rij = G(v)ij , where v is a “random seed” selected from {0, 1}L
uniformly at random. Formalizing and optimizing this step is the focus of this problem.

We will use the pseudo-random generator for bounded space due to Nisan [1]. Consider a class of
(S, b)-automata Q, that have 2S states and read sequences of symbols from {0, 1}b, i.e., operate
over an alphabet of size 2b. Such automata are defined by:

• A transition function Q(s, a), which describe the state the automaton moves to from state s
after reading a,

• An initial state start, and

• A set of accepting states Acc.

Such automata can model any deterministic computation device that processes a sequence u of
symbols from {0, 1}b in space S. We use Q(u) to denote the state reached by the automaton after
reading u, starting from start.

Nisan’s generator G has the following wonderful properties. Suppose that the automaton is applied
to sequences of length R. Then:

• The seed length L of G is equal to O(S logR), assuming b = O(S).

• It ε-fools any (S, b)-automaton Q , i.e.,

| Pr
u∈({0,1}b)R

[Q(u) ∈ Acc]− Pr
v∈{0,1}L

[Q(G(v)) ∈ Acc]| ≤ ε

for ε = 2−Ω(S).

Note that in the above definition, the input to Q consists of (pseudo)-random bits, which are
“tested” by Q. Nisan’s generator is designed to ε-fool all such tests, despite generating randomness
from a relatively small truly random seed.

To use Nisan’s generator in our streaming algorithm, we need to model the algorithm as a finite au-
tomaton reading the random entries of the matrix Π and producing some decision in the end. Then
we use the properties of the generator to argue that replacing truly random Π by a pseudorandomly
generated version does not (significantly) alter the behavior of the algorithm.

The computation specified in Equation (2) can be performed by an automaton Q that reads the
entries r1,1, . . . , r1,n, r2,1, . . . , r2,n, . . . rk,n of Π (i.e., in the row-wise order), computes the vector
[Z1, · · · , Zk], evaluates the median and accepts if the result is at least T . (Note that Q is parame-
terized by the vector x, i.e., x is not an input to Q!).

Finally, we are ready to state the problems:

(a) [5 points] Observe that Q can be implemented so that S = O(k log n). Calculate the length
of the seed L required to 2−Ω(S)-fool such automata Q.
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(b) [10 points] Show a better implementation of Q that requires only S = O(log k + log n).
Calculate the length of the seed L required to 2−Ω(S)-fool such automata Q.

4 Sparse Recovery using Count-Min Sketches [40 points]

Recall in the sparse recovery problem, we want to find a k-sparse vector x̂ (i.e., having at most k
nonzero entries) that minimizes the error ‖x− x̂‖q given the linear sketch Ax. In this problem, we
focus on minimizing the `1 error ‖x−x̂‖1. We assume A is chosen at random from some distribution
specified below (inspired by the Count-Min sketch) and show that some recovery algorithms work
with high probability. Recall ‖x‖q = (

∑
i |xi|q)1/q for a vector x.

We consider matrix A generated in the following way. Let w be a parameter (specified later) and H
be the set of all hash functions h : {1, . . . , n} → {1, . . . , w}. For each hash function h ∈ H, let A(h)
denote the w×n matrix with 0/1 entries where (A(h))ji is equal to 1 if j = h(i) and 0 if otherwise.
For d hash functions h1, . . . , hd chosen independently and uniformly at random from H, we define
A to be a vertical concatenation of A(h1), . . . , A(hd). The number of rows in A is equal to m = wd
and the number of columns is equal to n. In this problem, we ignore the issue of representing the
hash functions (and hence the matrix A) in small space. This can be fixed in standard ways.

Intuitively speaking, for a fixed value of i and hash function hl, the coordinate of the sketch
(Ax)(l−1)w+hl(i) is equal to the sum

∑
t:hl(t)=hl(i)

xt which is the sum of xi and some contributions
from other xt’s. We want to aggregate these coordinates over different hl to obtain an approximation
of xi.

Given a vector x, we define Errkq (x) to be the smallest `q approximation error mink-sparse x′ ‖x−x′‖q
where x′ ranges over all k-sparse vectors, i.e., those having at most k nonzero entries. Note for any
value of q, ‖x − x̂‖q is minimized when x̂ consists of the k largest (in magnitude) coordinates of
x; that is, x̂i equals xi for these k largest coordinates and 0 for other coordinates. The smallest
possible error for the sparse recovery problem is Errkq (x).

In what follows, assume ε ∈ (0, 1). For Parts (a) and (b), assume x ≥ 0, that is, all the coordinates
are nonnegative. Consider the Count-Min algorithm that computes the approximation x∗ where
x∗i = min

l
(A(hl)x)hl(i). Let i1, i2, . . . be the ordering of [n] such that |xi1 | ≥ · · · ≥ |xin |. The k

largest (in magnitude) coordinates are xi1 , . . . , xik .

(a) [10 points] For any i, argue that Pr
(
(A(hl)x)hl(i)−xi ≥

ε
k Errk1

)
≤ Pr

(
hl(i) ∈ hl({i1, . . . , ik}\

{i})
)

+ Pr
(∑

r>k:hl(ir)=hl(i),ir 6=i xir ≥
ε
k Errk1

)
. Note hl({i1, . . . , ik} \ {i})

)
is the set of hash

values for elements in the set {i1, . . . , ik}\{i}. For w =
4k

ε
, show that Pr

(
(A(hl)x)hl(i)−xi ≥

ε
k Errk1

)
≤ 1

2 . Hint: the Markov’s inequality might be useful.

(b) [5 points] Given Part a, show that Pr[x∗i − xi ≥ ε
k Errk1] ≤ 1

2d
. For an appropriately chosen

d = O(log n), show that ‖x∗ − x‖∞ ≤ ε
k Errk1 with high probability (i.e., with a failure

probability of the form
1

nc
for some constant c).

For Parts (c) and (d), assume general x (so, a coordinate can be negative). The count-min algorithm
and the above analysis would not work because the xi’s can be negative.
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(c) [15 points] For general x, design and analyze a different approximation scheme with d =
O(log n) that given Ax, returns an approximation x∗ such that ‖x∗−x‖∞ ≤ ε

k Errk1 with high
probability. Hint: You do not want to use min to aggregate. You can adapt the same line
of reasoning outlined in Parts a and b with some changes. It might be useful to show for an
appropriately chosen w, Pr

(
|(A(hl)x)hl(i) − xi| ≥

ε
k Errk1

)
is at most some constant strictly

less than 1
2 . The Chernoff bound might be useful.

Part (c) implies that for any x, given Ax, we can recover x∗ such that ‖x∗ − x‖∞ ≤ ε
k Errk1 with

high probability. Given this, we can solve the sparse recovery problem.

(d) [10 points] Let x̂ be consisting of the k largest (in magnitude) coordinates of the recovered
x∗ (and 0’s elsewhere) satisfying ‖x∗ − x‖∞ ≤ ε

k Errk1. Show that ‖x − x̂‖1 ≤ (1 + 3ε) Errk1.
Hint: It might be helpful to use that ‖x̂S‖1 ≤ ‖x̂Ŝ‖1 where S is the set of the k largest (in

magnitude) coordinates of x and Ŝ is the support of x̂.
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