
CS368: Algorithmic Techniques for Big Data Spring 2019-2020

Problem Set 3

Prof. Moses Charikar Due: May 24, 2020, 11:59pm

Policy: You are permitted to discuss and collaborate on the homework but you must write up
your solutions on your own or as a group of two. Furthermore, you need to cite your collaborators
and/or any sources that you consulted. No late submissions are allowed. There will be no late
days. All homework submissions are subject to the Stanford Honor Code. For all assignments, we
are allowing group submissions for groups of 1 or 2.

Submission: We will use Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account using your stanford.edu account. Use the course code
MK7NNR to register for CS368. You must use LaTeX, LyX, Microsoft Word, or a similar editor
to typeset your write-up. If you are working as a group of two, only one group member needs to
submit the assignment. When submitting, please remember to add all group member names on
Gradescope.

Length of submissions: Please include as much of the calculations that show that you understand
everything that is going through the answer. As a rule of thumb after you have solved the problem,
try to identify what are the main steps taken and critical points of a proof and include them.
Unnecessary long answers to questions will be penalized. The points next to each question are
indicative of the hardness/length of the proof.

1 Lower bounds for existence of triangles [25 points]

Consider a graph stream describing an unweighted, undirected n-vertex graph G. Prove that
Ω(n2) space is required to determine, in one pass, whether or not G contains a triangle, even with
randomization allowed.

2 Lower bounds for exact computation of F2 [20 points]

Prove that computing F2 exactly, in one pass with randomization allowed, requires Ω(min{m,n})
space. Construct an appropriate “hard stream” of length m with universe size n, where m = Θ(n),
and show that Ω(n) space is required on this stream. Then extend the result to multiple passes,
with randomization allowed. The lower bound for p passes should be Ω(min{m,n}/p).

3 Spanners for Weighted Graphs [45 points]

Recall that the distance estimation problem asks us to process a streamed graph G so that, given
any x, y ∈ V (G), we can return a t-approximation of dG(x, y), i.e., an estimate d̂(x, y) with the
property:

dG(x, y) ≤ d̂(x, y) ≤ t · dG(x, y).

1

Here, t is a fixed integer known beforehand. In class, we solved this using space Õ(n1+2/t) by
computing a subgraph H of G that happened to be a t-spanner.

(a) [20 points] Now suppose that the input graph is edge-weighted, with weights being integers
in [W]. Each token in the input stream is of the form (u, v, wuv), specifying an edge (u, v)
and its weight wuv ∈ [W]. Distances in G are defined using weighted shortest paths, i.e.,

dG,w(x, y) := min

{∑
e∈π

we : π is a path from x to y

}
.

Give an algorithm that processes G using space Õ(n1+2/t logW) so that, given x, y ∈ V (G),
we can then return a (2t)- approximation of dG,w(x, y). Give careful proofs of the quality and
space guarantees of your algorithm.

(b) [25 points] In class, we saw that even for the unweighted case, space Ω(n1+2/t) is necessary
to preserve all distances up to a factor of t. What if we only care about the max distance of a
connected graph? The diameter of a graph G = (V,E) is defined as diam(G) = max{dG(x, y) :
x, y ∈ V }, i.e., the largest vertex-to-vertex distance in the graph. A real number d̂ satisfying

diam(G) ≤ d̂ ≤ α · diam(G)

is called an α-approximation to the diameter. Suppose that 1 ≤ α < 1.5. Prove that, in
the vanilla graph streaming model, a 1-pass randomized algorithm that α- approximates the
diameter of a connected graph must use Ω(n) space. How does the result generalize to p
passes?

4 L0 Sampling with Pairwise Independent Hash Functions [45
points]

We revisit the problem of L0 sampling in which we uniformly sample an element l from the support
S of an input vector x. Recall, we are in the general framework of sketching where we maintain a
sketch Ax under increments and decrements of coordinates of x where x is a n-dimensional vector
and estimate some desired function from the sketch. Formally, we want the probability Pr(l = i)
that i is returned satisfy

Pr(l = i) ∈
(

(1−O(ε))
|xi|0

‖x‖0
, (1 +O(ε))

|xi|0

‖x‖0

)
,

where |xi|0 = 0 if xi = 0 and |xi|0 = 1 otherwise. Note |S| = ‖x‖0.

In class, we saw an L0 sampling sketch using fully random hash functions. In this problem, we
consider another L0 sampling sketch using a family H of pairwise independent hash functions
h : [n]→ [m]. Recall that pairwise independence means for any x1, x2 ∈ [n] and values y1, y2 ∈ [m],

Prh∈H(h(x1) = y1 ∧ h(x2) = y2) = Prh∈H(h(x1) = y1) Prh∈H(h(x2) = y2) ,

and, also, for any x ∈ [n] and y ∈ [m], Prh∈H(h(x) = y) = 1
m .

Consider the following algorithm for a large enough constant c and a constant c′ to be chosen.
Assume ε ∈ (0, 12) and S 6= ∅.

2

Algorithm 1

Input: ε ∈ (0, 12)

1. For j = 1, . . . , log cn
ε and k = 1, . . . , c

′

ε , let hkj : [n]→ {0, . . . , 2j − 1} be hash

functions drawn from a pairwise independent hash family.

2. As we read input x (its increments/decrements), maintain the following for each hkj :

Dk
j ∈ (1± 0.1)‖xSk

j
‖0 for Skj = {i ∈ S : hkj (i) = 0}

Ckj =
∑

i∈Sk
j
xi

T kj =
∑

i∈Sk
j
ixi

3. Let j∗ be the largest j for which #{k : Dk
j ∈ 1± 0.1} ≥ 1.

4. Output T kj∗/C
k
j∗ for an arbitrary k for which Dk

j∗ ∈ 1± 0.1.

Strictly speaking, hash functions in Step 1 are being drawn from different hash families with
corresponding ranges for different values of j. For simplicity, assume each Dk

j in Step 2 is exactly
in the interval (1±0.1)‖xSk

j
‖0 with error probability of 0. Note 1±0.1 denotes the interval [0.9, 1.1],

so (1± 0.1)‖xSk
j
‖0 denotes the interval [0.9 · ‖xSk

j
‖0, 1.1 · ‖xSk

j
‖0].

(a) [15 points] Fix arbitrary j and k. For any i ∈ S, note that Pr(hkj (i) = 0) = 1
2j

. Show

that Pr(hkj (i) = 0 ∧ |Skj | = 1) ≥ 1
2j

(
1− ‖x‖0

2j

)
. Conclude that Pr(hkj (i) = 0 ∧ |Skj | = 1) ∈[

1
2j

(
1− ‖x‖0

2j

)
, 1
2j

]
. The wedge operator ∧ denotes logical and. Hint: use the union bound

and pairwise independence.

(b) [10 points] Let ĵ be the unique integer j such that ‖x‖0
2j
∈ (ε2 , ε]. For any j ≥ ĵ and any

i ∈ S, show that Pr(hkj (i) = 0 | |Skj | = 1) ∈
(

(1−O(ε)) 1
‖x‖0 , (1 +O(ε)) 1

‖x‖0

)
. Note this is a

conditional probability.

(c) [10 points] For an appropriately chosen c′, show that the above algorithm solves the L0

sampling problem with some constant error probability strictly less than
1

2
.

(d) [10 points] Using a well-known technique, design an algorithm that solves the L0 sampling

problem with the error probability at most δ for any ε ∈ (0,
1

2
) and δ > 0. What is the overall

space requirement in terms of ε and δ?

5 Extra Problem: Bipartite Graphs (Do not turn in!)

A graph G is called bipartite if V (G) can be partitioned into two sets S and Sc such that all edges
lie between vertices of those two sets, that is, |EG(S, Sc)| = |E(G)|. Equivalently, there exists
a valid two coloring of the vertices, where a coloring is valid if there is no monochromatic edge
(i.e., with endpoints of the same color). Consider the vanilla graph streaming model (with edge
insertions only).

3

(a) [15 points] Give a deterministic algorithm that uses O(n log n) space and decides whether a
graph is bipartite. Give a proof of correctness.

(b) [20 points] Show that any randomized one-pass streaming algorithm that decides whether
a graph is bipartite requires Ω(n) space.

(c) [25 points] Given a undirected graph G, we define its bipartite double cover G̃ = (Ṽ , Ẽ)
where Ṽ is a vertex set containing two copies v1, v2 of every vertex v ∈ V (G), and Ẽ is an
edge set containing the edges {u1, v2} and {v1, u2} for all edges {u, v} ∈ E(G). Prove that
the graph G being bipartite is equivalent to

#Connected Components(G̃) = 2 ·#Connected Components(G) .

Show how to use this fact to design a streaming algorithm to test whether a graph is bipartite.
Give the space requirements of your algorithm.

References

[1] Noam Nisan. Pseudorandom Generators for Space-Bounded Computation. Combinatorica,
12(4):449-461, 1992.

4

