1 Overview

Looked at so far:
- Randomized algorithms for (fast) low-rank approximation
- Johnson-Lindenstrauss Lemma → Random Projections
- Approximate multiplication → Random Sampling Algorithms
 Both have additive error

Today:
- Wigner’s Semicircle Law
 Random Matrix Theorum → Element-wise sampling algorithm

Next Time:
- Approximate L2 Regression → $(1 + \epsilon)$ Approximation

2 Wigner’s Semicircle Law

What does a 10^6 dimensional data set look like?
- What would the "null hypothesis" of a truly random data set look like?

Wigner’s Semicircle Law:
Let $A = (a_{ij})$ be a symmetric matrix ($a_{ij} = a_{ji}$) such that
1. $E(a_{ij}) = 0$
2. $Var(a_{ij}) = \sigma^2$
3. $|a_{ij}| \leq K$

Let $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n \in \mathbb{R}$ be the eigenvalues of A
Let $W_n(x) = \text{the empirical distribution of the eigenvalues.}

Then $\lim_{n \to +\infty} W_n(x \times 2\sigma\sqrt{n}) = W(x)$ in probability

Where $W(x) = \begin{cases} \frac{x}{2}(1 - x^2)^{1/2} & \text{for } |x| \leq 1 \\ 0 & \text{for } |x| > 1 \end{cases}$

This function is a semicircle centered at the origin with radius 1

Proof Idea: Compare the moments of $W(x)$ with the moments of $\frac{2}{\pi}(1 - x^2)^{1/2}$
3 Extensions

1. If \(E(a_{ij}) = \mu \neq 0 \)
 Then \(\lambda_1(A) \sim N(n\mu + \frac{\sigma^2}{n}, 2\sigma^2) \)
 And the rest of the eigenvalues will follow the semicircle law

2. Apply Wigner’s Law to the adjacency matrix of a random graph

 If \(G = (V,E) \), and \(\forall ij \in V \times V, ij \in E \) with probability \(p \)
 Then \(A_{ij} = \begin{cases}
 1 & \text{with probability } p \\
 0 & \text{with probability } (1-p)
 \end{cases} \)

 Therefore the entries of this matrix have non-zero mean, but fixed variance

 How sparse can this matrix be before the results break down?
 Let \(d = np \) be the average degree of the matrix
 Then the ”trace argument” only works if \(p \geq \frac{\log(n)^4}{n} \)
 In other words, if the above relation holds, then \(d_{\text{empirical}} \approx d_{\text{expected}} \)

 What if \(p = \frac{2}{n} \)?
 What if you want a random graph with expected degrees?

4 Bounds on the largest eigenvalue

We want: For a fixed \(n \), to be able to make some statement about the largest eigenvalue

Fact: If \(G \) is a random \(n \times d \) matrix, \(d \leq n \) with entries \(N(0,\sigma^2) \), i.i.d, and for a fixed \(\epsilon, k \)
then w.p. \(\frac{1}{\text{poly}(k,\epsilon)} \)
\(\|G\|_2 = \|G_n\|_2 \approx (2 + \epsilon)\sigma\sqrt{n} \)
\(\|G\|_F \leq (2 + \epsilon)\sigma\sqrt{nk} \)

Is this scale good or bad?

Let \(D \) be the trivial rank-\(k \) approximation to \(G \) obtained by keeping the first \(k \) columns.
Then \(\|D\|_F \approx \sigma\sqrt{nk} \)
\(\text{Rank}(D) \leq k \), by definition, so \(\|D\|_2 \geq \frac{\|D\|_F}{\sqrt{k}} \approx \sigma\sqrt{n} \)

This generalizes to the where the distribution of the entries in \(G \) has:
- Mean zero
- Bounded entries
- Independence

The following results about the largest eigenvalue of a random symmetric matrix can be found in the references:

From Furedi and Komlos:
Let \(A \) be a random symmetric matrix with: \(|a_{ij}| \leq k \), \(E(a_{ij}) = 0 \), and \(\text{var}(a_{ij}) = \sigma^2 \)
Then there exists a constant \(C = C(\sigma, k) \) such that with high probability:
\[2\sigma\sqrt{n} - Cn^{1/3}\log(n) \leq \lambda_1(A) \leq 2\sigma\sqrt{n} + Cn^{1/3}\log(n) \]

This theorem is extended in Alon, Krivelevich, and Vu:
Lemma 5.1. Let add a data-dependent noise matrix to get a speed up (without messing things up too much). Suppose $A \in \mathbb{R}^{m \times n}$ and N is a noise matrix (i.e. 0 mean, etc.) such that $A + N \approx A$. Then we will try to add a data-dependent noise matrix to get a speed up (without messing things up too much).

Proof of Lemma. (Note: A, \hat{A}, and N_k denote the best rank k approximations to A, \hat{A} and N respectively.)

Claim 5.2. $\|A_k\|_F \leq \|P_{B_k} A\|_F + 2 \|(A - B)_k\|_F$

Proof of Claim.

\[
\|P_{A_k} A\|_F \leq \|P_{B_k} A\|_F + 2 \|(A - B)_k\|_F
\]

which proves the claim. \square

Now, from the claim it follows that

\[
\|P_{B_k} A\|_F^2 \geq (\|P_{A_k} A\|_F - 2 \|(A - B)_k\|_F)^2
\]

\[
= \|P_{A_k} A\|_F^2 - 4 \|P_{A_k} A\|_F \cdot \|(A - B)_k\|_F + 4 \|(A - B)_k\|_F^2.
\]

5 “How can we use these ideas to do something low rank without causing too much damage?”

Suppose $A \in \mathbb{R}^{m \times n}$ and N is a noise matrix (i.e. 0 mean, etc.) such that $A + N \approx A$. Then we will try to add a data-dependent noise matrix to get a speed up (without messing things up too much).

Lemma 5.1. Let A and N be such that $\hat{A} = A + N$. Then

1) $\|A - A_k\|_2 \leq \|A - \hat{A}_k\|_2 \leq \|A - A_k\|_2 + 2\|N_k\|_2$

2) $\|A - A_k\|_F \leq \|A - \hat{A}_k\|_F \leq \|A - A_k\|_F + \|N_k\|_F + 2\sqrt{\|N_k\|_F \cdot \|A_k\|_F}$

(Note: A_k, \hat{A}_k, and N_k denote the best rank k approximations to A, \hat{A} and N respectively.)

Proof of Lemma. The first inequality of both (1) and (2) follows from the definition of A_k as the best rank k approximation to A. Now, let B be an any matrix (e.g. $A + N$).

1) $\|A - B_k\|_2 \leq \|A - B\|_2 + \|B - B_k\|_2$ by the triangle inequality

$\leq \|A - B\|_2 + \|B - A_k\|_2$ since B_k is the best rank k approximation to B

$\leq \|A - B\|_2 + \|B - A\|_2 + \|A - A_k\|_2$ by the triangle inequality

$= \|A - A_k\|_2 + 2\|B - A\|_2$

$= \|A - A_k\|_2 + 2\|(B - A)_k\|_2$

where the last equality holds since $B - A$ and $(B - A)_k$ have the same largest eigenvalue. Part (1) of the lemma follows letting $B = A = A + N$.

2) Let P_M denote the projection onto the column space of the matrix M.

Claim 5.2. $\|P_{A_k} A\|_F \leq \|P_{B_k} A\|_F + 2 \|(A - B)_k\|_F$

Proof of Claim.

\[
\|P_{A_k} A\|_F \leq \|P_{A_k} (A - B)\|_F + \|P_{A_k} B\|_F \text{ by the triangle inequality}
\]

\[
\leq \|P_{A_k} (A - B)\|_F + \|P_{B_k} (B - A)\|_F \text{ since of all B_k is the best rank k approximation to B}
\]

\[
\leq \|P_{B_k} (A - B)\|_F + \|P_{B_k} (B - A)\|_F + \|P_{B_k} A\|_F
\]

\[
\leq \|P_{B_k} A\|_F + 2 \|(P_{A_k - B_k})(A - B)\|_F \text{ since $(A - B)_k$ is the best rank k approx. to $A - B$}
\]

\[
= \|P_{B_k} A\|_F + 2 \|(A - B)_k\|_F \text{ since $P_{(A-B)_k}(A - B) = (A - B)_k$}
\]

which proves the claim. \square
Thus, we have that
\[||P_{B_k}A||^2_F \geq ||P_{A_k}A||^2_F - 4||P_{A_k}A|| \cdot ||(A-B)_k||_F, \]
which we shall use shortly. Next, observe that
\[||A - B_k||_F \leq ||A - P_{B_k}A||_F + ||P_{B_k}A - B_k||_F \]
by the triangle inequality
\[\leq ||A - P_{B_k}A||_F + ||P_{B_k}(A - B)||_F \]
since \(P_{B_k}B = B_k \)
\[\leq ||A - P_{B_k}A||_F + ||P_{(A-B)_k}(A - B)||_F \]
since \((A - B)_k\) is the best rank \(k\) approx. to \(A - B\).

Thus,
\[||A - B_k||_F \leq ||A - P_{B_k}A||_F + ||(A - B)_k||_F. \]

Finally, we make use of Equations 1 and 2:
\[||A - P_{B_k}A||_F \leq (||A||^2_F - ||P_{A_k}A||^2_F + 4||P_{A_k}A|| \cdot ||(A-B)_k||_F)^{1/2} \]
by Equation 1
\[\leq (||A - A_k||^2_F + 4||A_k|| \cdot ||(A - B)_k||_F)^{1/2} \]
\[\leq ||A - A_k||_F + 2(||A_k|| \cdot ||(A - B)_k||_F)^{1/2} \]
using that \(\sqrt{x+y} \leq \sqrt{x} + \sqrt{y} \). And by Equation 2,
\[||A - B_k||_F \leq ||A - P_{B_k}A||_F + ||(A - B)_k||_F \]
\[\leq ||A - A_k||_F + 2(||A_k|| \cdot ||(A - B)_k||_F)^{1/2} + ||(A - B)_k||_F \]
Taking \(B = \hat{A} = A + N \), this gives
\[||A - \hat{A}_k||_F \leq ||A - A_k||_F + 2(||A_k|| \cdot ||N_k||_F)^{1/2} + ||N_k||_F, \]
which completes the proof of the second part of the lemma.

\[\square \]

6 Applications of the above lemma

The lemma above establishes that a rank \(k\) approximation of the perturbed matrix may not be too much worse. Now, we give two examples where perturbing can help in terms of memory and speed:

1. In representing \(A\), each \(a_{ij}\) takes 32 or 64 bits.
2. Iterative eigensolvers depend on the number of non-zero entries of \(A\).

6.1 Quantize the data

Given \(A\), let \(b = \max_{ij} |a_{ij}| \) and define
\[\hat{A}_{ij} = \begin{cases} +b & \text{wp. 1/2} + A_{ij}/(2b) \\ -b & \text{wp. 1/2} - A_{ij}/(2b) \end{cases} \]

Now, \(E[\hat{A}_{ij}] = A_{ij} \) and \(Var[\hat{A}_{ij}] = b^2 - A_{ij} \) and all the \(\hat{A}_{ij}\) are independent. It follows from Theorem 3.1 of the Achlioptas and McSherry paper, that with high probability, \(||A - \hat{A}||_F \) or 2 is not too large. By the lemmas, a low rank approximation to this quantized version of \(A\) will not be too bad.
6.2 Sparsify the data

Let \(p = (\frac{8 \log n}{n})^4 \). Here, we sample (independently) elementwise:

\[
\hat{A}_{ij} = \begin{cases}
A_{ij}/p & \text{wp. } p \\
0 & \text{wp. } 1 - p
\end{cases}
\]

(5)

So \(E[\hat{A}_{ij}] = A_{ij} \) and \(Var[\hat{A}_{ij}] = A_{ij}^2 (1/p - 1) \leq b^2/p \). And with high probability \(||(A - \hat{A})_k|| \leq 2(1 + \epsilon)\sigma \sqrt{n} \) \(\leq 4b\sqrt{n}/p \).

We can actually do better by non-uniform sampling: Let \(p_{ij} = p A_{ij}^2 / b^2 \) and

\[
\hat{A}_{ij} = \begin{cases}
A_{ij}/p_{ij} & \text{wp. } p_{ij} \\
0 & \text{wp. } 1 - p_{ij}
\end{cases}
\]

(6)

We still have \(E[\hat{A}_{ij}] = A_{ij} \) and \(Var[\hat{A}_{ij}] = A_{ij}^2 (1/p_{ij} - 1) \) and the error bounds still hold. The expected number of non-zero elements is in this case

\[
E[\text{Num. non-zeros}] = \sum p_{ij} = p ||A||_F^2 / b^2 = \frac{pmn}{b^2} \frac{||A||_F^2}{mn}.
\]

(7)

(Alternatively, we can use \(p_{ij} \sim A_{ij} \) for small entries to keep from violating the bound constraint.)

7 References:

