Homework 1

Due: Friday 10/19 at 11:59 PM

- 1. (a) Prove that every ℓ_2 metric on *n* points embeds isometrically into ℓ_2 with n-1 dimensions.
 - (b) Prove that every ℓ_1 metric on n points embeds isometrically into ℓ_1 with $\binom{n}{2}$ dimensions. *Hint:* Use Carathéodory's theorem: If a point $x \neq 0$ lies in the convex cone generated by a set $P \subseteq \mathbb{R}^d$, then x can be expressed as a non-negative linear combination of at most d points in P. How can you represent an ℓ_1 metric on n points?
- 2. Show that every embedding of the shortest path metric of a cycle graph of length n into the line \mathbb{R}^1 with the metric d(x, y) = |x y| has distortion at least $\Omega(n)$.

Hint: Consider three vertices on the cycle separated by distances n/3.

3. For all finite $p \ge 1$, show that the mapping given in the proof of Bourgain's theorem is an embedding into ℓ_p with distortion $O\left(\frac{\log n}{p}\right)$.

Hint: Use Hölder's inequality.

4. Prove that the integrality gap of the LP for generalized sparsest cut is exactly equal to the worst-case distortion needed to map *n*-point metrics into ℓ_1 .

Hint: Use LP duality.

5. In this problem, you will show that linear projections perform very poorly for dimension reduction in ℓ_1 (which is in contrast to ℓ_2). More specifically, we will specify here an explicit set of O(n) points in ℓ_1^n , and show that any linear embedding of that point set (with ℓ_1) into ℓ_1^d incurs distortion at least $\sqrt{\frac{n}{d}}$.

The point set consists of the origin O, the n standard basis vectors P_i (where P_i has 1 in the *i*th coordinate and 0's elsewhere), and m = O(n) points Q_i with the following property: For every pair of coordinates j_1, j_2 and pair of values in $(x_1, x_2) \in \{1, -1\}^2$, exactly m/4 of the points Q_i have the coordinates j_1 and j_2 set to x_1 and x_2 , respectively. (Such set of points Q_i can constructed from the support of a pairwise independent distribution.)

Without loss of generality, consider a linear map $f : \ell_1^n \to \ell_1^d$ that is non-expanding with distortion α , i.e. $\forall x, y \in \{O, P_1, \dots, P_n, Q_1, \dots, Q_m\}$,

$$\frac{1}{\alpha} \|x - y\|_1 \le \|f(x) - f(y)\|_1 \le \|x - y\|_1.$$

Our goal in this problem is to show that $\alpha \ge \sqrt{\frac{n}{d}}$. W.l.o.g., f maps the origin in \mathbb{R}^n to the origin in \mathbb{R}^d .

Let $\sigma_1, \ldots, \sigma_d : \mathbb{R}^n \to \mathbb{R}^1$ such that $f = (\sigma_1, \ldots, \sigma_d)$. Consider $\sigma \in \{\sigma_1, \ldots, \sigma_d\}$ with $\sigma(x_1, \ldots, x_n) = \sum_{j=1}^n \gamma_j x_j$. (a) Prove that $|\gamma_j| \le 1$.

 $\begin{array}{ll} \text{(b) Prove that } \displaystyle \frac{1}{m} \displaystyle \sum_{i=1}^{m} |\sigma(Q_i)| \leq \sqrt{\displaystyle \sum_{j=1}^{n} \gamma_j^2} \leq \sqrt{\displaystyle \sum_{j=1}^{n} |\gamma_j|}. \\ \text{(c) Show that } \displaystyle \frac{n}{d} + \displaystyle \sum_{j=1}^{n} |\sigma(P_j)| \geq 2\sqrt{\displaystyle \frac{n}{d}} \cdot \displaystyle \frac{1}{m} \displaystyle \sum_{i=1}^{m} |\sigma(Q_i)|, \\ \text{ and conclude that } n + \displaystyle \sum_{j=1}^{n} \|f(P_j)\|_1 \geq 2\sqrt{\displaystyle \frac{n}{d}} \cdot \displaystyle \frac{1}{m} \displaystyle \sum_{i=1}^{m} \|f(Q_i)\|_1. \\ \text{(d) Show that the distortion } \alpha \geq \sqrt{\displaystyle \frac{n}{d}}. \end{array}$